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Diagrammatic approach for open chaotic systems

Oded Agam
The Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel

~Received 24 June 1999!

A semiclassical diagrammatic approach is constructed for calculating correlation functions of observables in
open chaotic systems with time reversal symmetry. The results are expressed in terms of classical correlation
functions involving Wigner representations of the observables. The formalism is used to explain a recent
microwave experiment on the four-disk problem, and to characterize the two-point function of the photodis-
sociation cross section of complex molecules.

PACS number~s!: 05.45.2a, 03.65.Sq, 24.60.2k
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I. INTRODUCTION

An experimental enquiry of the internal structure of
complex system involves, usually, some type of a scatte
process. For instance, a photon is scattered from the sy
and then collected by a remote detector. In other situatio
the collected objects are fragments of the initial system its
A prototype example of the latter process is the photodis
ciation of molecules: The molecule absorbs a photon,
disintegrates by redistribution of energy in its vibration
modes@1#. A common feature of such systems is the co
pling to continuum modes. That is, above some ene
threshold, the system is open.

Open systems are characterized by resonances. Thes
eigenstates of open Hamiltonians which are normaliza
and therefore correspond to complex eigenvalues assoc
with a decay in time. In the most interesting situations, t
decay is sufficiently slow, allowing for the system to explo
a large part of the phase space before disintegration. In c
plex systems, such as nuclei or large molecules, the dyn
ics on these long lived resonances is chaotic; therefore,
expectation value of a generic observable exhibits a stat
cal behavior@2#. For instance, the absorption cross sect
for photodissociation of large molecules is a pseudorand
function of the photon energy@3–5#. This behavior suggest
a statistical analysis of observables in open chaotic syst
@6–12#.

The main purpose of this paper is to construct a diagra
matic scheme for calculating correlators of observables
open chaotic systems. This diagrammatic approach is sim
to the cross diagram technique in disordered systems@13#.
However, although both techniques rely on the semiclass
approximation, there are differences: The main advantag
the proposed scheme is in its capability of describing in
vidual systems rather than an ensemble of them. Ensem
averaging, as opposed to the energy averaging emplo
here, tends to erase ‘‘clean’’ features of individual system
These features may have important manifestations, as wi
demonstrated in this paper. On the other hand, disorder
grammatics provides a systematic way of calculating corr
tions due to quantum interference effects. At this stage
are not able to provide a similar prescription for general c
otic systems. Therefore, we confine our attention to o
systems with decay time shorter than the time at which w
PRE 611063-651X/2000/61~2!/1285~14!/$15.00
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localization effects set in. The latter time scale, known as
Ehernfest time, diverges logarithmically in the semiclassi
limit @14#.

The semiclassical analysis of a quantum system brings
the relation to its underlying classical dynamics@15#. For
example, the classical dynamics of an electron in a dis
dered metal is diffusive, and ensemble averages of quan
observables of the electron are expressed in terms of
spectral properties of the diffusion propagator@16#. In more
general situations the classical evolution is described by
Perron-Frobenius operator whose spectrum, known as
Ruelle resonances@17,18#, describes the irreversible relax
ation of probability densities in phase space.

The classical spectrum of the system sets the impor
time scales of the problem. When the system is almost c
there are two significant time scales: One is the decay tim
the system,td , which is inversely proportional to the typica
width of the resonances. The closer the system, the lon
the decay time. The second time scaletc is the time it takes
for a classical density distribution to relax to the ergod
state on the energy shell, when the system is closed. In
fusive systems this time is known as the Thouless time@19#.

A large separation between the classical time scalestd
@tc , implies a universal statistical behavior of the syste
on energy scales smaller than\/tc . That is, the statistics is
described by a random matrix theory@20# suitable for open
systems@21,22#. However, as will be demonstrated in th
paper, there are important manifestations of the nonunive
behavior of the system, which are especially pronoun
when td is of the same order astc . The main use of the
diagrammatic approach will be to calculate these individ
imprints of the system. This information is most importa
for constructing effective models from experimental data

The organization of this paper is as follows. In Sec. II w
derive the classical propagator of the system by an ene
averaging of the Green functions. This propagator constitu
the basic building block of the diagrammatic approach
veloped in Sec. III. We shall restrict our considerations
systems with time reversal symmetry. In Sec. IV we pres
two applications of the formalism. One concerns the mic
wave experiment on theN-disk scattering system@23#. The
second is the photodissociation absorption cross sectio
complex molecules. In Sec. V we summarize our results,
mention directions of further studies.
1285 ©2000 The American Physical Society
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II. CLASSICAL PROPAGATION
FROM QUANTUM GREEN FUNCTIONS

The purpose of this section is to construct the build
blocks of the diagrammatic scheme which will be develop
in this paper. It is the classical propagator, which is a gen
alization of the ‘‘diffuson’’ ladder diagrams of disordere
systems@13#. Our construction will rely on the semiclassic
approximation for the Green function of the quantum syst
@24,25#.

A. Semiclassical Green function

Let Ĥ be the Hamiltonian of an open system havingd
degrees of freedom, andH(x) be its classical counterpar
wherex5(r ,p) is a point in the classical phase space. T
advanced (1) and retarded (2) Green functions of the sys
tem are

G6~e!5
1

e6 i02Ĥ ,

wherei0 denote an infinitesimal positive imaginary part.
the semiclassical limit, these Green functions contain t
contributions:

G6.GW
61Gosc

6 .

The first, known as the Weyl term, is a smooth function
the energy given by

^r 8uGW
6~e!ur &5E dp

hd

e( i /\)p•(r82r )

e6 i02H~x!
, ~1!

where h52p\ is Planck’s constant, andx5„(r1r 8)/2,p….
The second contribution is an oscillatory function of the e
ergy expressed as a sum over the classical trajectories@24#
from r to r 8 with energye:

^r 8uGosc
1 ~e!ur &5(

m
Ame( i /\)Sm(r8,r ;e),

~2!

^r uGosc
2 ~e!ur 8&5(

m
Am* e2( i /\)Sm(r8,r ;e).

HereSm(r 8,r ;e) is the classical action of themth trajectory,
while Am is an amplitude which can be expressed as a c
bination of second derivatives ofSm(r 8,r ;e) with respect to
r 8 and r .

B. Classical propagator

To construct the classical propagator of the system fr
an energy average of Green functions, consider the func

P~x8,x;v!5^Tr$G1~e1\v!d~ x̂2x!G2~e!d~ x̂2x8!%&,
~3!

where thed-function operator is defined by the symmetr
Fourier transform@26#
d
r-

e

o

f

-

-

n

d~ x̂2x!5E dqdk

h2d
e( i /\)[k"( r̂2r )1q"(p̂2p)] . ~4!

Although not written explicitly, it will be assumed that thes
d functions have a small finite width, say the integration ov
k andq is limited to a large hypersphere. This width will b
taken to zero at the end of the calculation. Substituting d
nition ~4! in Eq. ~3!, we obtain

P~x8,x;v!5E dqdq8

h2d
e2( i /\)(p•q1p8•q8)

3 K G1S r 81
q8

2
,r2

q

2
;e1\v D

3G2S r1
q

2
,r 82

q8

2
;e D L . ~5!

Next we substitute the semiclassical approximation for
Green functions. Each Green function has a smooth and
oscillatory contribution; thus there are four terms
P(x8,x;v). However, it is easy to see that two of them
^GW

6Gosc
7 &, vanish upon averaging. Therefore only the We

contribution, ^GW
1GW

2&, and the oscillatory contributions
^Gosc

1 Gosc
2 &, survive.

The Weyl term is local in phase space, that is it is sign
cant only whenx.x8. This term, which we denote by
P loc(x8,x;v), is of minor importance for our purposes, an
we defer its calculation to Appendix A. The result, howev
is

P loc~x8,x;v!5
2p

2 i\hdv1
d~x82x!d„e2H~x!…, ~6!

wherev15v1 i0.
Consider now the contribution from the oscillatory pa

of the Green functions. The productGosc
1 Gosc

2 consists of a
double sum over trajectories:m from r2q/2 to r 81q8/2 and
n from r1q/2 to r 82q8/2; thus

Gosc
1 ~e1\v!Gosc

2 ~e!.(
mn

AmAn* eiSm2 iSn. ~7!

An illustration of two such orbits is depicted in Fig. 1. Th
term is, clearly, nonlocal in space. Its oscillatory depende
on the energy implies that upon energy averaging the m
contribution comes from the diagonal part (m5n) of the
double sum~7!. The approximation of a double sum by

FIG. 1. An illustration of the classical trajectories contributin
to the advanced~1! and the retarded (2) Green functions in Eq.
~5! before the energy averaging.
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PRE 61 1287DIAGRAMMATIC APPROACH FOR OPEN CHAOTIC SYSTEMS
single sum is called the ‘‘diagonal approximation’’@27#. It
does not take into account quantum interference correct
such as weak localization. However, according to our
sumptions on the relation between the Ehernfest time and
decay time of the system, these corrections can be negle

The construction of the diagonal sum of orbits involves
expansion of the actions around that of the orbit going fr
r to r 8, namely,

SmS r 81
q8

2
,r2

q

2
;e1\v D.Sm~r 8,r ;e!\vtm

1
1

2
~pm•q1pm8 •q8!,

SnS r 82
q8

2
,r1

q

2
;e D.Sn~r 8,r ;e!2

1

2
~pn•q1pn8•q8!,

wherepm andpm8 denote the initial~at point r ) and final~at
point r 8) momenta associated with themth orbit. Similarly
pn andpn8 are the initial and final momenta associated w
the nth orbit. tm is the time which takes for the particle t
travel along themth trajectory. Using the above expansio
for the actions in Eq.~7!, the diagonal approximation yield

^Gosc
2 ~e1\v!Gosc

1 ~e!&5(
m

uAmu2e( i /\)(pm•q1pm8 •q81\vtm).

Substituting this result into Eq.~5! and integrating overq
andq8 we arrive at

P~x8,x;v!5 (
orbits: r→r8

uAmu2eivtmd~p2pm!d~p82pm8 !.

~8!

This formula expressesP(x8,x;v) as a sum over the class
cal trajectories fromr to r 8. The momentad functions re-
strict the initial and final momenta of the trajectories top and
p8, respectively.

The diagonal sum~8! can be calculated using the flowin
sum rule@28# ~proved in Appendix B!:

hd21\2 (
orbits: r→r8

uAmu2g~xm8 ,xm ,tm!

5E
0

`

dtdp8dpg~x8,x,t !d„e2H~x!…d„x82x~ t !…. ~9!

Here g(x8,x,t) is a general function of the space pointsx8
and x, and the timet. The coordinatesxm5(r ,pm) and xm8
5(r 8,pm8 ) are the initial and final phase space points of
mth trajectory, whiletm is the corresponding period of th
trajectory. Finally,x(t) is the phase space trajectory of th
system, as function of the timet, starting fromx. This tra-
jectory is the solution of Hamilton’s equations:ṙ
5]H(x)/]p and ṗ52]H(x)/]r , with initial conditions
x(t50)5x. Using Eq.~9! to replace the sum over orbits i
Eq. ~8! by an integral over the time we finally obtain
ns
-

he
ed.
n

e

P~x8,x;v!5d„e2H~x!…E
0

`dt eivt

hd21\2
d„x82x~ t !…. ~10!

The functionP(x8,x;v) is the Fourier transform of the
classical propagator of the system fort.0. It is the gener-
alization of the ‘‘diffuson’’ of disordered systems to gener
chaotic systems. This analogy becomes clearer when pro
ing P(x8,x;v) down to real space, i.e., integrating overp
and p8. The integration overp8 is straightforward, and to
integrate overp we assume thatH(x)5p2/2m, and thatr (t)
is independent ofp. This is good approximation for a diffu
sive motion on long time scales, since momentum relaxa
is fast. Thus

E dp8dpP~x8,x;v!.
2pn̄

\ E dteivtd„r 82r ~ t !…,

wheren̄ is the average density of states per unit volume. T
function d„r 82r (t)…, is the matrix element of the diffusion
propagator between the position statesur & and ^r 8u, i.e.,

d„r 82r ~ t !…5^r 8ueD¹2tur &,

whereD is the diffusion constant. Inserting a complete set
momentum states, which diagonalizes the propagator,
integrating overt, we arrive at the formula for the diffuson o
disordered systems:

E dp8dpP~x8,x;v!.
2pn̄

V\ (
q

eiq•(r82r )

2 iv1Dq2
, ~11!

whereV is the volume of the system.
A spectral decomposition similar to Eq.~11! also exists

for the classical propagator of general chaotic syste
@17,18#. In the time domain one formally has

d„x82x~ t !…5^x8ue2Ltux&

5d„H~x!2H~x8!…(
a

e2gatxa
l ~x!xa

r ~x8!,

~12!

whereL5$ • ,H(x)% is the Poisson bracket operator of th
classical system,ga are its eigenvalues, andxa

l (x) and
xa

r (x8) are the corresponding left and right eigenfunction
The above spectral decomposition results from regulariza
of the classical dynamics. For instance, by keeping a fin
width for the d functions in Eq.~10!, and taking it to zero
only after the diagonalization of the propagator. The res
ing eigenvalues, called Ruelle resonances, constitute
Perron-Frobenius spectrum of the classical system. All c
sical eigenvalues of open systems have positive real p
They appear either as purely real or in complex conjug
pairs, We denote this set of eigenvalues by$ga%a50

` , and
order them according to the magnitude of their real pa
g08<g18<g28<•••, wherega5ga86 iga9 .

In concluding this section we remark that complex eige
values of the classical propagator,ga5ga86 iga9 , character-
ize ballistic chaotic systems. They emerge, for examp
when typical classical trajectories spend a long time n
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1288 PRE 61ODED AGAM
some short periodic orbit. This type of behavior does
appear in diffusive systems where classical relaxation
dominated by purely real eigenvalues. In Sec. IV we dem
strate the manifestations of complex Ruelle resonance
two examples.

III. SEMICLASSICAL DIAGRAMMATICS
FOR OPEN CHAOTIC SYSTEMS

In this section we construct a diagrammatic scheme
calculating correlation functions such as the two-point fu
tion ^Tr$G1(e1\v)Â%Tr$G2(e)B̂%&, where Â and B̂ are
some observables, and the averaging^•••& is over the ‘‘cen-
ter of mass’’ energye. The energy interval over which thi
averaging takes place is sufficiently wide to contain a la
number of resonances, but narrow enough so that the cl
cal dynamics within this interval is approximately indepe
dent of the energy.

The proposed diagrammatic scheme is a lift into ph
space of the disordered diagrammatics which is embed
either in the momentum or real space. An important step
this direction is to express products of quantum observa
in terms of their Wigner representations which are functio
of phase space variables. This issue will be considere
Sec. III A. Next we calculate the one-point function~Sec.
III B ! , and the two-point function~Sec. III C! functions. Fi-
nally ~Sec. III D!, the results will be generalized ton-point
functions by setting the diagram rules for their calculatio

A. Wigner representations

Let ^r uÂur 8& be a matrix element of the observableÂ,
where^r u and ur 8& are position states in Dirac notation. Th
Wigner representation@29#

A~x!5E dqe( i /\)p"qK r2
q

2
uÂur1

q

2L ~13!

of the operatorÂ is a function of the phase space variab
x5(r ,p). It is a faithful representation of the quantum o
erator, since all its matrix elements can be reconstruc
from the inverse relation

^r uÂur 8&5E dp

hd
e2( i /\)p•(r8Àr )A~x!, ~14!

wherex5„(r 8¿r )/2,p…. Expressed as a function on the cla
sical phase space, the Wigner representation is conven
for semiclassical expansions.

The external product of two operators,Â^ B̂, with matrix
elementŝ r0uÂur1&^r2uB̂ur3&, has more than one Wigner rep
resentation. These representations correspond to the va
ways by which pairs of coordinates are used for the Fou
transforms. One possibility is to pair the coordinates of e
one of the operators separately, i.e.,r0 with r1 and r2 with
r3. Obviously, the result in this case will be the product
the Wigner representations ofÂ and B̂. Denoting this by
@AB#d(x,x8), we have
t
is
-
in

r
-

e
si-
-

e
ed
in
es
s
in

d

-
nt

us
r
h

f

@AB#d~x,x8!5A~x!B~x8!5E dqdq8e( i /\)(p"q¿p8"q8)

3 K r2
q

2
uÂur1

q

2L K r 82
q8

2
uB̂ur 81

q8

2 L ,

~15!

wherex5(r,p), andx85(r 8,p8). The two other representa
tions correspond to different pairing configurations:r0 with
r3 and r1 with r2, which leads to

@AB#s~x,x8!5E dqdq8e( i /\)(p"q¿p8"q8)K r2
q

2
uÂur 81

q8

2 L
3K r 82

q8

2
uB̂ur1

q

2L , ~16!

and r0 with r2 and r1 with r3, which gives

@AB#c~x,x8!5E dqdq8e( i /\)(p"q¿p8"q8)K r2
q

2
uÂur 82

q8

2 L
3 K r1

q

2
uB̂ur 81

q8

2 L . ~17!

Similar to the inverse relation~14!, there are inverse rela
tions for products of matrix elements. The simplest case
the inverse relation for@AB#d(x,x8)5A(x)B(x8). It is a
product of two inverse formulas like Eq.~14!. The inverse
relations corresponding to Eq.~16! and ~17! are

^r0uÂur1&^r2uB̂ur3&

5E dpdp8

h2d
@AB#s~x,x8!e2( i /\)[p•(r32r0)1p8•(r12r2)]

~18!

5E dpdp8

h2d
@AB#c~x,x8!e2( i /\)[p•(r22r0)1p8•(r32r1)] ,

~19!

where in Eq. ~18! x5„(r31r0)/2,p… and x85„(r1
1r2)/2,p8…, while in Eq. ~19! x5„(r21r0)/2,p…, and x8
5„(r11r3)/2,p8….

In understanding the nature of the new Wigner repres
tations, it will be instructive to consider examples. As a fi
example consider the operators

Â5 f s~ r̂2r0! and B̂5 f s~ r̂2r1!, ~20!

where f s(r ) is a Gaussian function of widths:

f s~r !5
1

~2ps!d/2
expH 2

r2

2sJ . ~21!

A straightforward calculation of the Wigner representatio
yields

@AB#d~x8,x!5 f s~r2r0! f s~r 82r1! ~22!

and
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@AB#s,c~x8,x!5hdd~r2r 8! f s~r2r0! f s~r 82r1!

3 f \2/2s~p6p8!expH ~r12r0!2

4s
1

i

\
~p6p8!

3~r12r0!J , ~23!

where the1 and 2 signs ofp8 correspond to@AB#c and
@AB#s respectively.@AB#d(x8,x) is independent of the mo
menta and large whenr;r0 and r 8;r1. On the other hand
@AB#s,c(x8,x) are exponentially small for all values ofx and
x8, when ur0-r1u@s. If r05r1 and supu2/\2@1, then
@AB#s,c(x8,x)'hdf s

2(r2r0)d(r 82r )d(p6p8).
As a second example consider the case

Â5B̂5uf&^fu. ~24!

Here both observables are equal to the same projection
erator. Assuming the wave functionf(r ) to be real~as for
the case of time reversal symmetry! one immediately see
that all types of Wigner transforms are precisely the sam

@AA#s,c~x8,x!5@AA#d~x8,x!5rf~x8!rf~x!, ~25!

where

rf~x!5E dqe( i /\)p"qK r2
q

2 Uf L K fUr1
q

2L ~26!

is the Wigner function of the statef(r ). rf(x) is a real
function which upon small smearing in phase space yield
positive definite function that can be interpreted a ‘‘clas
cal’’ density distribution@29#.

B. One-point functions

To begin with the calculation of correlation functions, it
instructive to consider, first, the simplest case of one-po
functions:

CA5^Tr$Â Im G2~e!%&5E dx

hd
A~x!^Im G2~x!&. ~27!

HereÂ is an observable, and ImG2(e) is the imaginary part
of the retarded Green function. The second equality in
above formula is obtained by substituting Eq.~14! into the
trace, and taking into account that energy averaging acts
on the Green function. This averaging leaves only the W
contribution~1!; therefore,

CA5pŠ^A~x!&‹, ~28!

where double brackets denote the microcanonical ave
over the energy shelle5H(x), i.e.,

Š^A~x!&‹5E dx

hd
A~x!d„e2H~x!…. ~29!

Notice that Â and Š^A(x)&‹ do not have the same dimen
sions, they differ by dimensions of energy.
p-

:

a
-

t

e

ly
yl

ge

C. Two-point functions

We turn, now, to the calculation of the two-point functio

CAB~v!5^Tr$G1~e1\v!Â%Tr$G2~e!B̂%&c , ~30!

where ^•••&c denotes the connected part of the correla
@30#. Within the semiclassical approximation it means th
only the oscillatory parts of the Green functions contribute
CAB(v). Inserting complete sets of position states one c
write the correlator~30! as

CAB~v!5E dr0dr1dr2dr3A~r0 ,r1!B~r2 ,r3!

3^Gosc
1 ~r1 ,r0 ;e1\v!Gosc

2 ~r3 ,r2 ;e!&, ~31!

where

A~r0 ,r1!5^r0uÂur1&, B~r2 ,r3!5^r2uB̂ur3&. ~32!

Next we evaluate the average of^Gosc
1 Gosc

2 &. For this pur-
pose notice that, to obtain a nonzero contribution, one ha
pair orbits of the two Green function with similar action
This condition imposes restrictions as for the possible c
figuration of the coordinatesr0 ,r1 ,r2, andr3. The possibili-
ties ~in systems with time reversal symmetries! are ~i! r0
;r3 and r1;r2, as illustrated in Fig. 2~a!; ~ii ! r0;r2 and
r1;r3, as shown in Fig. 2~b!; and~iii ! two possibilities cor-
responding to the casesr0;r1 and r2;r3, where the orbits
are deformations of periodic orbits, as can be seen in F
2~c! and 2~d!. These pairing possibilities imply that the two
point function is a sum of terms

CAB~v!5CAB
a ~v!1CAB

b ~v!1CAB
c1d~v!, ~33!

where the superscriptsa, b, c, andd refer to the contribu-
tions associated with configurations of trajectories as sho
in Fig. 2.

We turn to calculate the various terms ofCAB(v). Con-
sider, first,CAB

a (v) associated with the configuration of o
bits shown Fig. 2~a!. We start by substituting the Wigne
representation~18!, implied by the pairing of initial and final
points, into Eq.~31!. Then we change variables to

r5~r01r3!/2, r 85~r11r2!/2,

FIG. 2. The orbit configurations contributing to the average
the Green functions product^Gosc

1 (r1 ,r0)Gosc
2 (r3 ,r2)&.
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1290 PRE 61ODED AGAM
q5r32r0 , q85r12r2 ,

and perform the average over the Green functions. This
erage gives precisely the classical propagatorP(x8,x;v)
@see Eq.~5!#; therefore,

CAB
a ~v!5E dxdx8@AB#s~x,x8!P~x8,x;v!

5
2p

\ E
0

`

dt eivt
Š^@AB#s„x,x~ t !…&‹, ~34!

where in the second line we substitute formula~10! for
P(x8,x;v), and integrate overx8.

The calculation of the contribution, coming from orbits
the type shown in Fig. 2~b!, follows along the same lines
The difference is that now we use the second Wigner re
sentation, Eq.~19!. Changing, again, variables to means a
differences of the initial coordinates, and using the time
versal symmetry of the system,G6(r3 ,r2)5G6(r2 ,r3),
yields

CAB
b ~v!5E dxdx8@AB#c~x,x8!P~x8,x;v!

5
2p

\ E
0

`

dt eivt
Š^@AB#c„x,x~ t !…&‹. ~35!

The computation of the last two contributions, associa
with the orbits of Figs. 2~c! and 2~d!, requires an additiona
step. This step comes in order to impose the condition
the two orbits are deformations of the same periodic orbi
is achieved by requiring that the orbit fromr0 to r1 passes
near (r21r3)/2, and similarly the orbit fromr3 to r2 passes
in the vicinity of (r01r1)/2. To implement this condition it
will be convenient to introduce a local coordinate systemr
5(t,r'), wheret is the time along the trajectory while th
coordinater' is perpendicular to it. Then the oscillatory pa
of the Green function satisfies the semiclassical product
lation

Gosc
6 ~r1 ,r0 ;e!.\E ṙ dr'Gosc

6 ~r1 ,r ;e!Gosc
6 ~r ,r0 ;e!.

~36!

This relation can be proved by calculating the integral in
stationary phase approximation; see Appendix C.

Substituting Eq.~36! in Eq. ~31! and representing the ma
trix elements of the operatorsÂ and B̂ in terms of their
inverse Wigner transforms@Eq. ~14!#, we obtain

CAB
c1d~v!5E dxdx8@AB#d~x,x8!K~x8,x!, ~37!

where
v-

e-
d
-

d

at
It

e-

e

K~x8,x!5
\2

h2dE dqdq8dr'dr'8 ṙ ṙ 8e2( i /\)(p•q1p8•q8)

3 K Gosc
1 S r1

q

2
,r 81r'8 ;e1\v D

3Gosc
1 S r 81r'8 ,r2

q

2
;e1\v D

3Gosc
2 S r 81

q8

2
,r1r' ;e D

3Gosc
2 S r1r' ,r 82

q8

2
;e D L ,

x5(r ,p), and x85(r 8,p8). In obtaining the above integra
we also changed variables to

r5~r01r1!/2, r 85~r21r3!/2,

q5r12r0 , q85r32r2 .

Now we approximate the average of the four Green functi
by the diagonal approximation. Diagonal sums in this ca
can be formed in two ways coming from the two possibiliti
of pairing the retarded and advanced Green functions. Th
two possibilities correspond to the orbits configurations illu
trated in Figs. 2~c! and 2~d!. The two contributions are iden
tical due to the time reversal symmetry of our system. As
the calculation of the classical propagator, we expand
actions to linear order aroundr , r 8, ande, and integrate over
q, q8, r' , andr 8' . The result is

K~x8,x!58p2h2dṙ ṙ 8(
mn

uAmu2uAnu2eiv(tm1tn)

3dS p2
pm1pn

2 D d~pm'2pn'!

3dS p82
pm8 1pn8

2 D d~pm'8 2pn'8 !,

wheretm andtn are the periods of the orbits going fromr to
r 8 and fromr 8 to r , respectively.pm andpn denote the mo-
menta of the orbits atr , and similarly pm8 and pn8 are the
momenta atr 8. We denote by subscript' the perpendicular
components of momenta that are conjugate tor' . Finally,
we replace the sum over orbits by an integral using the s
rule ~9!, and obtain

CAB
c1d~v!52E dtdt8

\2
eiv(t1t8)

Š^@AB#d~x,x8!&‹t,t8 .

~38!

The averageŠ^•••&‹t,t8 of a general functiong(x,x8) is de-
fined as
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Š^g~x,x8!&‹t,t85E dxdx8g~x,x8!d„e2H~x!…d„e

2H~x8!…d„xi82xi~ t !…d„xi2xi8~ t8!…,

~39!

wherexi denote a coordinate on the energy shelle5H(x).
The two d functions in the above integral imply that th
average is over periodic orbits on the energy shell with
riod t1t8. The factor of 2 in Eq.~38! is due to the time
reversal symmetry.

The final result for the two-point function,CAB(v), is the
sum @Eq. ~33!# of Eqs. ~34!, ~35!, and ~38!. It expresses a
quantum mechanical quantity, in terms of classical corre
tion functions associated with the Wigner representation
the operatorsÂ and B̂. There are two sources of contribu
tions toCAB(v): open trajectories, and periodic orbits. Th
magnitude of the corresponding terms depends on prope
of the various Wigner representations@AB#d(x,x8),
@AB#s(x,x8), and @AB#c(x,x8). When A(x) and B(x8) are
very smooth functions, the main contribution comes fro
periodic orbits. If, on the other hand,Â and B̂ equal to the
same projector, the main contribution comes from open
bits.

D. Diagrams rules for n-point functions in systems
with time reversal symmetry

The results for the two-point function can be generaliz
to n-point functions in systems with time reversal symmet
It is instructive to formulate this generalization in terms o
set of rules for a diagrammatic calculation. Only the co
nected part of the correlation functions will be consider
here. It implies that the relevant part of the Green function
the oscillatory contribution~2!.

We define the dimensionless propagator on the ene
surface as

Pe~xi8 ,xi ;v!5
2p

\ E
0

`

dt eivthdd„xi82xi~ t !…, ~40!

where bothxi and xi8 lie on the energy shelle5H(x). In
order to shorten our notations, from now on, we omit t
subscript i . The rules for calculating the average of a
n-point functions are the following.

~i! Write the correlation function as a space integral
volving the matrix elements of the operators and the Gr
functions.

~ii ! Find all possible pairs of initial and final points con
nected by Green functions, and construct the orbits confi
rations as in Fig. 2. To each coordinate pair assign a ph
space point.

~iii ! Express the matrix elements of the operators as
inverse transform of the Wigner representation implied
the pairing configuration of the initial and final points. The
Wigner representation are functions of the phases sp
points assigned in step~ii !.

~iv! Phase space points connected by retarded and
vanced Green functions are associated with the class
propagator~40! connecting the two points.
-
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~v! In the case where two classical propagators join at
same phase space point, then such a point is accompanie
factor of 1/2p @this factor emerges from expansions like E
~36!#.

~vi! Integrate over all phase space coordinates with
weight *dxd„e2H(x)…(•••)/hd. This integration is the
same as microcanonical averaging~29!.

The diagrams of the two-point correlation functio
CAB(v) are shown in Fig. 3. The contributionsCAB

a (v) and
CAB

b (v) are represented by Figs. 3~a! and 3~b!, respectively.
These terms came from orbits configurations shown in F
2~a! and 2~b!. The two other contributions@Figs. 2~c! and
2~d!#, CAB

c1d(v), are represented by the diagram of Fig. 3~c!.
In Fig. 4 we show examples of diagrams contributing

the three-point correlation function,

CABC~v1 ,v2!5^Tr$G1~e1\v1!Â%

3Tr$G2~e1\v2!B̂%Tr$G2~e!Ĉ%&c .

~41!

FIG. 3. The diagrams of the two-point functionCAB(v). Wiggly
lines represent the classical propagator on the energy shell@Eq.
~40!#, and the dashed line correspond to the verticies given by

appropriate Wigner representation of the observablesÂ and B̂.

FIG. 4. Examples of diagrams contributing to the three-po
function ~41!. The orbits configuration corresponding to a diagra
is drawn on its left side.@ABC#a,b(x,x8,x9) denote various Wigner

representations of the external product of observables,Â^ B̂^ Ĉ.
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1292 PRE 61ODED AGAM
For instance, the top diagram of this figure is equal
Š^Pe(x9,x8,v12v2)Pe(x8,x,v1)@ABC#a(x,x8,x9)&‹/2p,
where the microcanonical average is with respect to all
phase space coordinates.

Finally, we remark that the procedure outlined above g
erates a large number of diagrams. However, knowing so
general properties of the observables, such as symme
and the smoothness of their Wigner representations, can
in reducing the number of diagrams considerably.

IV. APPLICATIONS

The purpose of this section is to present applications
the formalism developed above. In the first example we c
sider theN-disk scattering system@31,32#. In the second ap-
plication we study the indirect photodissociation process
complex molecules@1#. Special attention will be given to
understand the manifestations of the individual imprints
the systems.

A. N-disk scattering system

Consider a quantum particle moving in a two-dimensio
plain, and scattered fromN disks located, say, randomly ne
the origin; see Fig. 5. Resonances in this system can be
tured as situations where the particle is trapped for a l
time in the vicinity of the disks. A natural quantity chara
terizing the system is the probability of finding it in a fin
stateuc f& when prepared in an initial stateuc i&. In the ex-
perimental realization of this system@23#, using microwave
cavities, a transmitor prepares the particle in a localiz
wave packet atr0, and a detector collects the particle atr1.
The signal is proportional touG1(r1 ,r0 ;e)u2, and its sim-
plest statistical characteristics is the correlation function:

K~v!5
^uG1~r1 ,r0 ;e!u2uG1~r1 ,r0 ;e1\v!u2&

^uG1~r1 ,r0 ;e!u2&2
21.

~42!

To implement the diagrammatic approach, we start
writing uG1(r1 ,r0 ;e)u2 as a trace:

uG1~r1 ,r0 ;e!u25Tr$G1~e!d~ r̂2r0!G2~e!d~ r̂2r1!%.
~43!

The orbit configuration representing the above formula
shown in Fig. 6~a!. Assuming the distanceur12r0u to be
larger than the particle wavelength, there will be only o

FIG. 5. An illustration of the classicalN-disk scattering system
In the experimental realization of the quantum analogue of
system, using microwave cavities, a transmiter located atr0 excites
a microwave field which is probed atr1.
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contribution associated with the oscillatory parts of t
Green functions. The diagram representing this contribut
is shown in Fig. 6~b!. A straightforward calculation of this
diagram yields

^uG1~r1 ,r0 ;e!u2&5E
0

`

dt f~r1 ,r0 ;t !, ~44!

where

f ~r1 ,r0 ;t !5E dp0

hd21\2
d„e2H~x0!…d„r12r ~x0 ,t !…

~45!

is proportional to the classical probability of finding partic
at r1, starting fromr0 in all possible directions, and evolvin
according to the classical equations of motion. Herer (x0 ,t)
denotes the trajectory of the particle, as function of timet,
starting from the initial phase space pointx05(r0 ,p0).

The correlatorK(v) is proportional to the diagram show
in Fig. 6~d!, where again we assume the distance betweer1
and r0 to be much longer than the particle wavelength.
straightforward calculation of this diagram leads to

K~v!5UF~r1 ,r0 ;v!

F~r1 ,r0 ;0!
U2

, ~46!

where

F~r1 ,r0 ;v!5E
0

`

dt eivt f ~r1 ,r0 ;t ! ~47!

is the Fourier transform off (r1 ,r0 ;t) for time t.0.
In understanding the typical behavior ofK(v), it is nec-

essary to characterize the functionf (r1 ,r0 ;t). The spectral
decomposition of the classical propagator@Eq. ~12!# implies
that @33#

is

FIG. 6. The diagrams of the correlation functionK(v). ~a! The
orbit configuration, and ~b! the corresponding diagram fo
^uG1(r1 ,r0 ;e)u2& . ~c! The orbit configuration, and~d! the diagram
for the connected part of̂uG1(r1 ,r0 ;e)u2uG1(r1 ,r0 ;e1\v)u2&.
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f ~r1 ,r0 ;t !5(
a

bae2gat, ~48!

wherega are the Ruelle resonances of the system, andba are
coefficients associated with the eigenfunctions of the cla
cal propagator,xa

l (x) andxa
r (x), as well as the precise po

sitions of the transmitor and the detector. The first eig
value g0 is the escape rate of the system. This eigenva
dominates the behavior of the system at long times, i.e. sm
v. Taking only its contribution, the correlation function r
duces to a Lorentzian,K(v)'g0

2/(g0
21v2). This result has

been known long ago in nuclear physics@2#. It was repro-
duced in the context of chaotic scattering@34–36#, and also
measured experimentally in a microwave cavities@37#.

We turn to a consideration of the nonuniversal imprints
the system onK(v). For this purpose we shall take int
account contributions of higher Ruelle resonances in
~48!. It will be convenient to rescale all frequencies withg0,
and setb051 ~without loss of generality!. Then, adding the
next term of eq.~48!, F(v) takes the form

F~v!.
1

11 iv
1(

6

b1

g181 i ~v6g19!
, ~49!

whereg18 andg19 denote the real and the imaginary parts
g1, respectively, and we assumeb1 to be real. In Fig. 7 we
plot the correlation functionK(v) calculated from Eq.~46!
using Eq. ~49!. The solid line is the Lorentzian obtaine
when ba50 for a.0. The dashed line is a representati
example of the nonuniversal behavior of the system~with
b151.5, g1852, g1954, andba50 for a.1).

A behavior very similar to that shown in Fig. 7 was r
cently observed in a microwave experiment on the four-d
system@23#. Our results explain the additional peak in th
measured correlation function,K(v), as an imprint of the
complex Ruelle resonances of the system@38#.

FIG. 7. The correlation functionK(v). The solid line corre-
spond to the universal limit whereba50 for all a.0. The dotted
line includes nonuniversal imprints of the system, withb151.5,
g1852, andg1954.
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B. Statistics of photodissociation spectra

As a second application of the semiclassical diagramm
approach, we study the statistics of photodissociation spe
of complex molecules, such as the radicals HO2 and NO2.
Disintegration of such molecules is a two-step process. In
first step, a photon excites the molecule to an energy ab
the dissociation threshold. Then fragmentation proceeds
redistribution of energy in the vibrational degrees of fre
dom, or tunneling from binding to unbinding energy surfac
of the adiabatic electronic potential@1#. A barrier, which
separates quasistable states from continuum modes, hin
the immediate dissociation of the excited molecule. T
large number of degrees of freedom and the complexity
the system imply that, on these long lived resonances,
dynamics of the system is chaotic. An illustration of such
system is depicted in Fig. 8.

Consider a molecule, in the ground stateug&, excited by a
light pulse to an energy above the dissociation threshold,
let Ĥ denote the Hamiltonian of the system on the exci
electronic surface (S1 in the illustration of Fig. 8!. It will be
assumed thatĤ represents an open system with several op
channels. The photodissociation cross section of the m
ecule, in the dipole approximation, is given by

s~e!5h Im Tr$ÂG2~e!%, ~50!

whereG2(e) is the retarded Green function of the molecu
and Â is a projection operator given by

Â5uf&^fu where uf&5Dug&. ~51!

Here D5d•ê is the projection of the electronic dipole mo
ment operator of the moleculed, on the polarizationê, of the
absorbed light, andh5e/c\«0 , c being the speed of light

FIG. 8. An illustration for the electronic energy surfaces of m
thyl nitrite, CH3ONO, as an example for a complex molecule whi
undergoes an indirect photodissociation process.S0 andS1 are con-
tour plots of the electronic surface potential associated with
ground and the excited electronic states. They are plotted as f
tions of the distances between the nitrogen and the oxygen at
keeping all other degrees of freedom fixed at their equilibrium v
ues. The irregular shape ofS1 leads to chaotic dynamics of th
excited molecule.
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and «0 the electric permitivity. The energye is measured
from the ground state of the molecule.

A natural statistical characteristic of the photodissociat
process is the dimensionless two-point correlation functio

Z~v!5
^s~e!s~e1\v!&c

^s~e!&2
. ~52!

It will be assumed that the excitation energy,e, is suffi-
ciently high such that the mean spacing between the vi
tional modes of the molecule is smaller than the ene
broadening due to the finite lifetime of the system in t
excited states. This is the regime of overlapping resonan

From Eqs.~50!, ~27!, and~30! it follows that the correla-
tion function ~52! is equal to

Z~v!5
1

2
Re

CAA~v!

CA
2

, ~53!

whereÂ is the projection operator@Eq. ~51!#, while CA and
CAA(v) are the corresponding one- and two-point functio
The special feature of the operatorÂ^ Â is that all its
Wigner representations are identical; see Eq.~25!. This im-
plies that Eq.~53! has the form

Z~v!.Z1~v!1Z2~v!, ~54!

where Z1(v) is the contribution of open orbits@Figs. 2~a!
and 2~b!#,

Z1~v!5
2

p\
ReE

0

`

dt eivt
Š^rf„x~ t !…rf~x!&‹

Š^rf~x!&‹2
, ~55!

while Z2(v) is the contribution of periodic orbits@Figs. 2~c!
and 2~d!#:

Z2~v!5
1

p2\2
ReE

0

`

dtdt8 eiv(t1t8)
Š^rf~x!rf~x8!&‹t,t8

Š^rf~x!&‹2
.

~56!

rf(x) in the above formulas is the Wigner function of th
initial stateDug&.

Consider the limit of smallv. This limit reflects the long
time behavior of the correlation functionsŠ^rf(x(t))rf(x)&‹
and Š^rf(x)rf(x8)&‹t,t8 . The leading contribution, in this
case, comes from the smallest eigenvalue in the spectra
composition~12!, i.e. g0. Taking into account only this ei
genvalue, we obtain

Š^rf~x~ t !!rf~x!&‹.ae2g0t,

Š^rf~x!rf~x8!&‹t,t8.be2g0(t1t8),

where

a5hd
Š^rf~x!x0

l ~x!&‹Š^rf~x!x0
r ~x!&‹, ~57!

b5h2d^^rf~x!x0
l ~x!x0

r ~x!&&2. ~58!

The ratiob/a5D has an energy dimension. In the semicla
sical limit \→0, it approaches zero as\d; thus it corre-
n
:

a-
y

s.

.

e-

-

sponds to the mean spacing between resonances. Substi
the above approximations of the classical correlation fu
tions into Eqs.~55! and ~56!, and rescaling the energies a
\v5VD and\g05GD, one obtains

Z~V!'Z(0)~V!5
2j

p S G

G21V2
1

1

2p

G22V2

~G21V2!2D ,

~59!

wherej5(a/Š^rf&‹)2/b is a dimensionless constant of ord
unity. The first term in the brackets comes fromZ1(v), i.e.,
from open trajectories of the type shown in Figs. 2~a! and
2~b!. This term constitutes the leading contribution toZ(v)
whenG.1. In the limit G!1, the second term in the brack
ets becomes dominant. This term, associated withZ2(v),
comes from the periodic orbits of the system. Notice, ho
ever, that the regimeG!1, corresponding to less than on
open channel, is beyond our semiclassical approximation

Equation ~59! represents the universal limit of the co
relatorZ(V). It was first derived by Fyodorov and Alhass
@21# using the nonlinears model @39#. Our derivation con-
firms their conjecture that, in the limit of overlapping res
nances (G.1), Z(v) can be derived by semiclassical met
ods. An alternative derivation of Eq.~59!, using random
matrix theory, is presented in Appendix D.

The range of validity of formulas~54!–~56! goes far be-
yond the universal regime. They also account for syst
specific contributions which contain valuable informatio
about the nature of the system. These individual impri
come from the higher eigenvalues and eigenvectors of
classical propagator@Eq. ~12!#.

For example, the leading nonuniversal contribution co
ing from Z1(v) is given by

Z1
(1)~V!.

2ja1

p (
6

G1

G1
21~V6V1!2

.

HereG15\g18/D andV15\g19/D, whereg18 andg19 are the
real and imaginary parts of the second Ruelle resonance.
constanta1 comes from an integral similar to Eq.~57! but
with the eigenfunctionsx1

l ,r(x).
Similarly, the leading nonuniversal contribution ofZ2(V)

is

Z2
(1)~V!.

2jb01

p2 (
6

GG12V~V6V1!

~G21V2!„G1
21~V6V1!2

…

,

whereb01 is a constant depending onrf(x) and the eigen-
functionsx0

l ,r(x) andx1
l ,r(x).

The two-point functionZ(V), in the approximation

Z~V!.Z(0)~V!1Z1
(1)~V!1Z2

(1)~V!, ~60!

is plotted in Fig. 9. The solid line represents the univer
form Z(0)(V) given by Eq.~59!. The dotted line shows the
typical behavior of systems where decay of correlations is
diffusive nature. It appears when the subleading Ruelle re
nances are purely real (V150). In this case the deviation
from Z(0)(V) appears mainly as an increase of correlatio
near V50. The dashed line corresponds to the case o
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complex Ruelle resonance (V1Þ0). It characterizes the be
havior of ballistic systems. Here the nonuniversal contrib
tion is located in the tail ofZ(V), nearV5V1, where the
universal term~59! is already negligible. These plots demo
strate the significance of the individual imprints of the sy
tem onZ(V).

V. SUMMARY

The main result of this paper is the construction of a d
grammatic approach for calculating then-point functions of
open chaotic systems with time reversal symmetry. In
sence, this approach is simply an economic way for eval
ing the ‘‘diagonal approximation’’ for then-point functions.
The result is expressed in terms of classical correlation fu
tions associated with the observables. These correla
functions reflect properties of the Perron-Frobenius spec
decomposition of the system, i.e., features of the irrevers
dynamics of probability densities on the energy shell.
important ingredient of this formalism is the generalizati
of Wigner transforms for external products of operators.

The strength of this formalism is in its capability of trea
ing particular systems rather than an ensemble of them. N
ertheless, in the appropriate limit, our results reduce to th
of random matrix theory. This was demonstrated by cons
ering two examples: theN-disk scattering system, and th
process of indirect photodissociation in complex molecu
The weakness of this diagrammatic approach is the lack
clear systematic procedure for calculating quantum cor
tions such as weak localization correction. This limits o
treatment to systems with an escape rate sufficiently larg
that the system disintegrate before weak localization effe
set in.

The focus of this paper was on systems with time reve
symmetry, and no other discrete symmetries. Within the u
versal limit, a generalization of our results to a system wi
out time reversal symmetry is straightforward. Howev
when considering nonuniversal manifestations, the situa

FIG. 9. The two-point functionZ(V) of the photodissociation
cross section for systems with time reversal symmetry. The s
line is the universal result@Eq. ~59!# for the casej5G51. The
dashed and dotted lines show the two-point function which inclu
system specific contributions in the approximation of Eq.~60!. In
both casesG51, G153, anda15b0151, but the dashed line cor
responds toV156, and the dotted line toV150.
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is more complicated. The reason for this is that, usually
ballistic systems, there is no separation between the t
scales on which nonuniversal features appear, and that w
time reversal symmetry is broken. Further development
this diagrammatic approach should include a prescription
calculating weak localization corrections, generalization
systems without time reversal symmetry, and generaliza
to systems with other discrete symmetries, such as reflec
or inversion.
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APPENDIX A: LOCAL TERM P loc„x8,x;v….

In this appendix we calculate the Weyl contribution to t
classical propagator,P(x8,x;v). Substituting Eq.~1! in Eq.
~5!, and integrating overq andq8, we obtain

P loc~x8,x;v!5E dp0dp1

h2d
dS p2

p01p1

2 D d~p2p8!

3
e( i /\)(p02p1)•(r82r )

@e1\v1 i02H~x0!#@e2 i02H~x1!#
,

wherex05„(r1r 8)/2,p0…, and x15„(r1r 8)/2,p1…. Next we
change variables tok85(p01p1)/2 andk5p02p1, and in-
tegrate overk8. The above integral then reduces to

E dk

h2d

d~p2p8!e( i /\)k•(r82r )

@e1\v1 i02H~x1!#@e2 i02H~x2!#
,

wherex65„(r1r 8)/2,p6k/2…. In the semiclassical limit,\
→0, the integral overk yields ad function; thus

P loc~x8,x;v!.
d~x82x!/hd

„e1\v1 i02H~x!…„e2 i02H~x!…
.

~A1!

To extract the leading order semiclassical approximation
this expression, we manipulate the denominator as

D5
1

\v1 i0 F 1

e2 i02H~x!
2

1

e1\v1 i02H~x!G
.

1

\v1 i0 F 1

e2 i02H~x!
2

1

e1 i02H~x!G
5

1

\v1 i0
2p id„e2H~x!….

Substituting these results in Eq.~A1!, we obtain Eq.~6!.

APPENDIX B: THE CLASSICAL SUM RULE „9…

In this appendix we derive the sum rule~9!. The deriva-
tion will be performed by calculating the right hand sid
~rhs! of the equation and showing it equals to the left ha

id
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side. It is convenient to introduce a local coordinate syst
with time coordinate,t, along the trajectory, andr' perpen-
dicular to the trajectory. The corresponding conjugate m
menta are the Hamiltonian functionH, andp' . In these co-
ordinates the rhs of formula~9! takes the form

@rhs of Eq.~9!#5E
0

`

dtE dHdH8

ṙ ṙ 8
dp'dp'8 g~x,x8,t !

3d~e2H8!d~H2Ht8!d~t2t t8!

3d~r'2r 8't!d~p'2p't8 !.

whereṙ 8 and ṙ are the absolute values of the velocity at t
initial and final points, respectively, while the subscript
denotes the value of the corresponding coordinate after
t. Thus, in particular,r 8't andp8't are functions of the initial
phase space pointx85(r 8,p8) and the timet. Since energy is
conserved, one hasHt85H8. The factor 1/ṙ ṙ 8 in the above
integral comes from the Jacobian of the transformation
variables. An integration overH, H8, andp' gives

@rhs of Eq.~9!#5E
0

`

dtE dp'8

ṙ ṙ 8
d~t2t t8!d~r'2r't8 !

3g~x,x8,t !uH5H85e, p'5p
't8 .

Since the initial and final points of the particle as well as
energy are fixed, there is only a discrete set of trajecto
which contribute to the above integral. These are the tra
tories for which p'8 takes a value such thatr'5r't8 . We
denote these trajectories by a subscriptm. Thusp'm8 andp'm

are the initial and final momenta of themth trajectory, andtm
is the corresponding period. Then

@rhs of Eq.~9!#5(
m

E
0

`

dt d~ t2tm!E
Gm

dp'8

ṙ ṙ 8

3d~r'2r't8 !g~xm ,xm8 ,t !,

whereGm is an infinitesimal region surroundingp'm8 in the
momentum space,xm5(r ,pm), and xm8 5(r 8,pm8 ). The inte-
gral is straightforward, and the result is

@rhs of Eq.~9!#5(
m

g~xm ,xm8 ,tm!F 1

ṙ ṙ 8
Det21S ]r'

]p'8
D G

m

,

where all quantities in the square brackets are calculated
the mth orbit.

To see that this result is equal to the left hand side of
~9!, we notice that the expression in the square bracket
related to the amplitudeAm of the semiclassical Green func
tion @Eq. ~2!# according to@25#

uAmu25
1

hd21\2 F 1

ṙ ṙ 8
Det21S ]r'

]p8'
D G

m

. ~B1!

Combining the last two equations yields the sum rule~9!.
m

-

e

f

s
c-

or

.
is

APPENDIX C: PRODUCT FORMULA EQ. „36…

In this appendix we prove the semiclassical formula~36!
relating a Green function to the product of two Green fun
tions. We consider the case ofGosc

1 . The generalization for
Gosc

2 is straightforward. We start by evaluating the integ
on the right hand side of Eq.~36! using stationary phase
approximation. Substituting Eq.~2! into Eq. ~36! yields

@rhs of Eq.~36!#

5\ (
m,m8

E dr' ṙ AmAm8e
( i /\)[Sm(r1 ,r ;e)1Sm8(r ,r0 ;e)] ,

~C1!

wherem denotes the orbits fromr0 to r , while m8 the orbits
from r to r1. The amplitudesAm and Am8 satisfy relation
~B1!. The stationary phase condition of the above integra

]

]r'

@Sm8~r1 ,r ;e!1Sm~r ,r0 ;e!#50.

With the classical relations]Sm(r ,r0 ;e)/]r5pm and
Sm8 (r1 ,r ;e)/]r52pm8 , this implies that the momenta of th
mth andm8th trajectories atr are equal,pm5pm8 . Thus r
lies on a classical trajectory which goes fromr0 to r1. We
denote this trajectory byn; see Fig. 10. Notice that the sta
tionary phase condition applies only for the perpendicu
components of the momenta. However, since the energ
fixed and equal for both trajectories, the longitudinal comp
nents of the momenta of both trajectories have to be equa
well.

Denoting byr c a stationary value ofr , we see that the
stationary phase is the action of then-th orbit from r0 to r1:

Sm8~r1 ,r c ;e!1Sm~r c ,r0 ;e!5Sn~r1 ,r0 ;e!.

Thus integral~C1! takes the form

@rhs of Eq.~36!#5(
n

I ne( i /\)Sn(r1 ,r0 ;e),

where the pre-exponent factorI n is given by

I n5\ ṙ AmAm8h
(d21)/2XDetS ]p'm2p'm8

]r'
D C21/2

. ~C2!

This was calculated by expanding the sum of actio
Sm8(r1 ,r ;e)1Sm(r ,r0 ;e) to second order inr' aroundr c ,
and calculating the resulting Gaussian integral~C1!.

FIG. 10. Classical paths joiningr0 r1 and r c1r' .
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To see the equivalence between this result and the
hand side of Eq.~36!, it remains to show thatI n5An , where
An is the amplitude corresponding to thenth orbit from r0 to
r1. It is sufficient to analyze the magnitudes ofI n and An ,
since the Maslov phases are additive. Substituting Eq.~B1!,
for Am andAm8 , in Eq. ~C2! we obtain

I n5
1

Ahd21h2ṙ 0ṙ 1 5 DetS ]p'm8

]r'1
DDetS ]p'0

]r'
D

DetS ]~p'm2p'm8!

]r'
D 6

1/2

.

Thus I n5An if the term in the curly brackets is equal t
Det(]p'1 /]r'0). Following Berry and Mount@24#, we first
write this term as a determinant of the product of the th
matrices:

$ %5DetF S ]p'm2p'm8
]r'

D 21

3
]p'm8
]r'1

3
]p'0

]r'
G . ~C3!

Now we use the stationary phase conditionp'm2p'm850,
which applies atr5r c , and differentiate it with respect to
r'1, keepingr'0 fixed. Then

]p'm8
]r'1

5
]~p'm2p'm8!

]r'

3
]r'

]r'1
.

Substituting this result into Eq.~C3! and using the chain rule
of derivatives, we obtain$ %5Det(]p'0 /]r'1) which proves
Eq. ~36!.

APPENDIX D: AN ALTERNATIVE DERIVATION
OF EQ. „59…

In this appendix we derive formula~59! using random
matrix theory@20# ~RMT!. Our starting point is the Hamil-
tonian of the formH01 ig/2, whereH0 is anN3N random
matrix of the Gaussian orthegonal~GOE! ensemble, andg is
a constant which equals to the typical width of the re
nances. With these definitions,s(e)5^fudg/2(e2H0)uf&,
where

dg~x!5
1

p

g

g21x2
, ~D1!

and uf&5Dug& @see Eq.~51!#. Denoting bywa( j ) the j th
component of the eigenfunction numbera of H0, we have

s~e!5h(
a

(
jk

dg/2~e2ea!wa~ j !wa~k!f~ j !f~k!.

~D2!

To perform the ensemble averaging we use the propert
RMT that eigenenergiesea and the wave functionswa( j ) are
statistically independent. Thus

^s~e!&5
h

ND (
jk

f~ j !f~k!d jk ,
ft

e

-

of

where 1/D5^(adg/2(e2ea)& is the average density o
states, and̂wa( j )wa(k)&5d jk /N. Working in units where
h^fuf&5N, we obtain^s&51/D.

Consider now the connected part of the correlation fu
tion ^s(e)s(e1v)&. Its calculation requires the average of
product of two expressions like Eq.~D2!. Here we use the
RMT relation

N2^wa~ j !wa~k!wb~ i !wb~ l !&5dab@d j i dkl1d j l dki#1d jkd i l .

The three terms on the right hand side of the above equa
correspond to the various paring possibilities of orbits
shown in Fig. 2. In particular, the first and second ter
correspond to Figs. 2~a! and 2~b!, while the third term cor-
responds to Figs. 2~c! and 2~d!. Performing the sum overi, j,
k, and l, the contribution of the first two terms isI ab(v)
52^(adg/2(e2ea)dg/2(e1v2ea)&, while the contribution
of the third term is given by the correlatorI cd(v)
5^(abdg/2(e2ea)dg/2(e1v2eb)&21/D2. Thus

I ab~v!5
2

DE dedg/2~e!dg/2~e1v!5
2

Dp

g

v21g2

and

I cd~v!5E dede8dg/2~e!dg/2~e82v!R~e2e8!,

whereR(e2e8) is the two-point function for the density o
states of the GOE ensemble. Substituting the approxima
R(e2e8).Re*dttei (e2e8)t/p2, and performing the inte-
grals overe ande8, we immediately obtain

I cd~v!5
1

p2
ReE

0

`

dt te2gt1 ivt5
1

p2

g22v2

~g21v2!2
.

Collecting these results we arrive at

Z(0)~v!5D2
„I ab~v!1I cd~v!…

5
2D

p

g

v21g2
1

D2

p2

g22v2

~g21v2!2
.

Formula~59!, apart from the prefactorj, is obtained by res-
caling the variables in the above equation asG5g/D and
V5v/D.

We show, now, that in systems with a separation of ti
scalesg1@g0, the constantj in Eq. ~59! is approximately
unity. The separation of time scales implies that for tim
shorter than 1/g0 the dynamics of the system may be a
proximated by that of a close chaotic system whose Ham
tonian will be denoted byH0(x). In this case the first eigen
functions of the classical propagator are constant functi
corresponding to the ergodic distribution on the energy sh
namely, x l(x)5x r(x)5@*dxd(e2H0(x)#21/2. Substituting
these eigenfunctions into expressions~57! and~58! for a and
b, and evaluatingj5a2/Š^rf&‹2/b, one obtainsj51.
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