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Diagrammatic approach for open chaotic systems
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A semiclassical diagrammatic approach is constructed for calculating correlation functions of observables in
open chaotic systems with time reversal symmetry. The results are expressed in terms of classical correlation
functions involving Wigner representations of the observables. The formalism is used to explain a recent
microwave experiment on the four-disk problem, and to characterize the two-point function of the photodis-
sociation cross section of complex molecules.

PACS numbegps): 05.45-a, 03.65.Sq, 24.66-k

I. INTRODUCTION localization effects set in. The latter time scale, known as the
Ehernfest time, diverges logarithmically in the semiclassical

An experimental enquiry of the internal structure of alimit [14].
complex system involves, usually, some type of a scattering The semiclassical analysis of a quantum system brings out
process. For instance, a photon is scattered from the systeifne relation to its underlying classical dynamids]. For
and then collected by a remote detector. In other situationgxample, the classical dynamics of an electron in a disor-
the collected objects are fragments of the initial system itselfdered metal is diffusive, and ensemble averages of quantum
A prototype example of the latter process is the photodissoebservables of the electron are expressed in terms of the
ciation of molecules: The molecule absorbs a photon, angpectral properties of the diffusion propagétb6]. In more
disintegrates by redistribution of energy in its vibrational general situations the classical evolution is described by the
modes[1]. A common feature of such systems is the cou-Perron-Frobenius operator whose spectrum, known as the
pling to continuum modes. That is, above some energyruelle resonancegl7,18, describes the irreversible relax-
threshold, the system is open. ation of probability densities in phase space.

Open systems are characterized by resonances. These areThe classical spectrum of the system sets the important
eigenstates of open Hamiltonians which are normalizabletime scales of the problem. When the system is almost close
and therefore correspond to complex eigenvalues associat#tere are two significant time scales: One is the decay time of
with a decay in time. In the most interesting situations, thisthe systemsy, which is inversely proportional to the typical
decay is sufficiently slow, allowing for the system to explorewidth of the resonances. The closer the system, the longer
a large part of the phase space before disintegration. In conthe decay time. The second time scalés the time it takes
plex systems, such as nuclei or large molecules, the dynanfier a classical density distribution to relax to the ergodic
ics on these long lived resonances is chaotic; therefore, thetate on the energy shell, when the system is closed. In dif-
expectation value of a generic observable exhibits a statistfusive systems this time is known as the Thouless {ifr8s.
cal behavior{2]. For instance, the absorption cross section A large separation between the classical time scaigs,
for photodissociation of large molecules is a pseudorandore 7., implies a universal statistical behavior of the system
function of the photon energy8—5]. This behavior suggests on energy scales smaller thanhr.. That is, the statistics is
a statistical analysis of observables in open chaotic systendescribed by a random matrix thedr30] suitable for open
[6-12. systems[21,22. However, as will be demonstrated in this

The main purpose of this paper is to construct a diagrampaper, there are important manifestations of the nonuniversal
matic scheme for calculating correlators of observables ibehavior of the system, which are especially pronounced
open chaotic systems. This diagrammatic approach is similawhen 74 is of the same order ag.. The main use of the
to the cross diagram technique in disordered systgiif  diagrammatic approach will be to calculate these individual
However, although both techniques rely on the semiclassicaimprints of the system. This information is most important
approximation, there are differences: The main advantage dbr constructing effective models from experimental data.
the proposed scheme is in its capability of describing indi- The organization of this paper is as follows. In Sec. Il we
vidual systems rather than an ensemble of them. Ensembtierive the classical propagator of the system by an energy
averaging, as opposed to the energy averaging employeeraging of the Green functions. This propagator constitutes
here, tends to erase “clean” features of individual systemsthe basic building block of the diagrammatic approach de-
These features may have important manifestations, as will beeloped in Sec. Ill. We shall restrict our considerations to
demonstrated in this paper. On the other hand, disorder disystems with time reversal symmetry. In Sec. IV we present
grammatics provides a systematic way of calculating correctwo applications of the formalism. One concerns the micro-
tions due to quantum interference effects. At this stage wevave experiment on thBl-disk scattering systerf23]. The
are not able to provide a similar prescription for general chasecond is the photodissociation absorption cross section of
otic systems. Therefore, we confine our attention to opemomplex molecules. In Sec. V we summarize our results, and
systems with decay time shorter than the time at which weaknention directions of further studies.
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II. CLASSICAL PROPAGATION e+ho
FROM QUANTUM GREEN FUNCTIONS "

The purpose of this section is to construct the building

blocks of the diagrammatic scheme which will be developed 2
in this paper. It is the classical propagator, which is a gener- r+% .
alization of the “diffuson” ladder diagrams of disordered = o=

systemg 13]. Our construction will rely on the semiclassical €
approximation for the Green function of the quantum system ) ) ] ) ) o
[24,25. FIG. 1. An illustration of the classical trajectories contributing

to the advanced+) and the retarded-) Green functions in Eq.

(5) before the energy averaging.
A. Semiclassical Green function o aing

Let 7 be the Hamiltonian of an open system havithg
degrees of freedom, art(x) be its classical counterpart,
wherex=(r,p) is a point in the classical phase space. The
advanced () and retarded () Green functions of the sys- Although not written explicitly, it will be assumed that these
tem are 6 functions have a small finite width, say the integration over
k andq is limited to a large hypersphere. This width will be
taken to zero at the end of the calculation. Substituting defi-

. dgdk . - .
—x)= | ———i/R)[k(r=r)+q-(p—p)]
5(X X) J’ h2d el r=r+a(p=p)l (4)

G (e)= e+rio—TH' nition (4) in Eq. (3), we obtain
whereiO denote an infinitesimal positive imaginary part. In T(x’ X.w):J' dqdq,e—(i/ﬁ)(p.qup’.q’)
the semiclassical limit, these Green functions contain two o h2d
contributions: /
x{G* r’+q— r—ﬂ'e-l—ﬁw
G =Gy+ Gy, 2" 2
The first, knqwn as the Weyl term, is a smooth function of <G | r+ ﬂ,r,_ q_,;e) > (5)
the energy given by 2 2

URp-(r' —r Next we substitute the semiclassical approximation for the
dp e( p-( ) N h
(r'|Gyfe)|ry= f - (1) Green functions. Each Green function has a smooth and an
hd €xi0—"H(x) oscillatory contribution; thus there are four terms in
II(x',x;w). However, it is easy to see that two of them,
whereh=2m# is Planck’s constant, and=((r+r’)/2p).  (GyGgso, Vanish upon averaging. Therefore only the Weyl
The second contribution is an oscillatory function of the en-contribution, <G\X/G\X/>- and the oscillatory contributions
ergy expressed as a sum over the classical traject®@#s (GiGosa), survive.

fromr to r’ with energye: The Weyl term is local in phase space, that is it is signifi-
cant only whenx=x'. This term, which we denote by
rGt N=S A eliMS, (e, H|oc(x’,x;_w), is of minor |mportan_ce for our purposes, and
(r'[Gosd elr) % # . we defer its calculation to Appendix A. The result, however,
2) is

(r|Gosd @)ry=3 Axe (MS,(r'rio,
"

Hoo(X', X 0) = (X' —=x)o(e—=H(X)), (6)

—ifih% ™

HereS,(r',r; ) is the classical action of theth trajectory, h . .

while A, is an amplitude which can be expressed as a com*"'€'¢® =w+i0. o _

bination of second derivatives &,(r’,r;€) with respect to Consider now the contribution from the oscillatory parts
" of the Green functions. The produ&t, G, consists of a

r’ andr.
double sum over trajectorieg; fromr—q/2 tor’+q’/2 and
) v fromr+q/2 tor'—q’'/2; thus
B. Classical propagator
To construct the classical propagator of the system from + - * LS —iS
. . . +n =2 AA v, 7
an energy average of Green functions, consider the function Gosd ehw)Gosd €) MEV iy €78 @)

(X', X;0)=(TH{G" (e+w)S(x—x)G () 8(Xx—x")}), An illustration of two such orbits is depicted in Fig. 1. This
(3) termis, clearly, nonlocal in space. Its oscillatory dependence
on the energy implies that upon energy averaging the main
where thed-function operator is defined by the symmetric contribution comes from the diagonal pant <€ v) of the
Fourier transfornj 26] double sum(7). The approximation of a double sum by a
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single sum is called the “diagonal approximatiof27]. It wdt ot
does not take into account quantum interference corrections  TI(x',X;w)= 5(e—H(x))j 15 OX = X(1). (10
such as weak localization. However, according to our as- oh™ "%
sumptions on the relation between the Ehernfest time and the . Lo .
decay time of the system, these corrections can be neglectecol The functionII(x’,x;w) is the Fourier transform of the

The construction of the diagonal sum of orbits involves an gss!cal pmpa%a?m of t’r}e system for0. It is the gener-
mahzatlon of the “diffuson” of disordered systems to general

chaotic systems. This analogy becomes clearer when project-
ing I1(x',x;w) down to real space, i.e., integrating over
and p’. The integration ovep’ is straightforward, and to
=S, (r',r;e)fiwt, integrate ovep we assume that{(x) = p?/2m, and thatr (t)
is independent op. This is good approximation for a diffu-
1 sive motion on long time scales, since momentum relaxation
+§(pM-q+pl'L-q’), is fast. Thus

expansion of the actions around that of the orbit going fro
r tor’, namely,

!

r’+q—,r—9;e+hw

S 2 2

o

2wy _
Qg 1 | dprapmioc o)== [ ateetaw v,
Sy(r’—§,r+5:6)zsy(r’,r;e)—g(pv-qw;-q’). f

wherev is the average density of states per unit volume. The
wherep,, andp, denote the initialat pointr) and final(at ~ function 6(r’—r(t)), is the matrix element of the diffusion
point r’) momenta associated with theth orbit. Similarly ~ propagator between the position stafigsand(r'|[, i.e.,
p, andp, are the initial and final momenta associated with )
the vth orbit. t, is the time which takes for the particle to S(r'—r(t))=(r'[e®Vr),
travel along theuth trajectory. Using the above expansions

for the actions in Eq(7), the diagonal approximation yields whereD is the diffusion constant. Inserting a complete set of

momentum states, which diagonalizes the propagator, and
integrating ovet, we arrive at the formula for the diffuson of

<G;sc(6+hw)egsc(6)>:2 |A#|2e(i/ﬁ)(p#-q+p;-q’+ﬁwtﬂ)_ disordered systems:
M

27y €90
Substituting this result into Eq(5) and integrating ove j dp’dpIl(X’,X; @)=/
andq’ we arrive at

, 11
7 —iw+Dg? an

whereV is the volume of the system.
A spectral decomposition similar to E¢L1) also exists
for the classical propagator of general chaotic systems
(8  [17,18. In the time domain one formally has

(X' xw)= 2 |Al%“%8p—p,) sp' —p,).

orbits: r—r’

r_ _ 1 A— Lt
This formula expresse (x',x;®) as a sum over the classi- O ~X()={(X"le""|x)

cal trajectories fronr to r’. The momentas functions re-
strict the initial and final momenta of the trajectoriesptand = S(H(X)—H(x')) 2 e Yalyb(x) x5(x"),
p’, respectively. *

The diagonal sung8) can be calculated using the flowing (12

sum rule[28] (proved in Appendix B ) )
whereL={ - ,H(x)} is the Poisson bracket operator of the

classical system,y, are its eigenvalues, an;t'a(x) and
hd=142 E |ALIP9(x, X, 1) x.L(x") are the corresponding left and right eigenfunctions.
orbits: r—r’ The above spectral decomposition results from regularization
% of the classical dynamics. For instance, by keeping a finite
= fo dtdp’dpg(x’,x,t) s(e=H(X))o(x'=X(t)). (9  width for the & functions in Eq.(10), and taking it to zero
only after the diagonalization of the propagator. The result-
, . . . ing eigenvalues, called Ruelle resonances, constitute the
Hereg(x,x,t) is a general function of the space poiXS b ron.Frobenius spectrum of the classical system. Al clas-
andx, and the timet. The coordinates;,=(r,p,) andx,  gjcal eigenvalues of open systems have positive real part.
=(r’,p,) are the initial and final phase space points of theThey appear either as purely real or in complex conjugate
uth trajectory, whilet,, is the corresponding period of the pajrs. We denote this set of eigenvaluesiby,}”_,, and
trajectory. Finally,x(t) is the phase space trajectory of the grger them according to the magnitude of their real parts,
system, as function of the time starting fromx. This tre}— Yi<yl<yh<---, wherey,=y.*iy.
jectory is the solution of Hamilton’s equationsr In concluding this section we remark that complex eigen-
=JdH(x)/dp and p=—dH(x)/dr, with initial conditions values of the classical propagator,=y,=*iy., character-
x(t=0)=x. Using Eq.(9) to replace the sum over orbits in ize ballistic chaotic systems. They emerge, for example,
Eq. (8) by an integral over the time we finally obtain when typical classical trajectories spend a long time near
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some short periodic orbit. This type of behavior does not , ) TV
appear in diffusive systems where classical relaxation is [ABJg(X,x")=A(X)B(x )=f dqdg'el/M (Pra+pia)
dominated by purely real eigenvalues. In Sec. IV we demon-

strate the manifestations of complex Ruelle resonances in q - q e KRR
two examples. X r_§|A|r+§ r —§|B|r +5 )

(19
I1l. SEMICLASSICAL DIAGRAMMATICS
FOR OPEN CHAOTIC SYSTEMS wherex=(r,p), andx’=(r’,p"). The two other representa-
_ _ _ . tions correspond to different pairing configurationg:with
In this section we construct a diagrammatic scheme fof, andr, with r,, which leads to

calculating correlation functions such as the two-point func-
tion (Tr{G" (e+Aw)A}Tr{G (€)B}), whereA and B are
some observables, and the averading ) is over the “cen-
ter of mass” energy. The energy interval over which this ,
averaging takes place is sufficiently wide to contain a large ><< r— q—|f3|r+ 9> (16)
number of resonances, but narrow enough so that the classi- 2 2/’
cal dynamics within this interval is approximately indepen- ) ) . )
dent of the energy. andr with r, andr, with r3, which gives

The proposed diagrammatic scheme is a lift into phase /
space of the disordered diagrammatics which is embedded[AB]C(X,X/):f dqdq/e(i/h)(p~q+p’-q’)<r_ 9|A|r’— q_>
either in the momentum or real space. An important step in 2 2
this direction is to express products of quantum observables q . q’
in terms of their Wigner representations which are functions X < r+-|Blr'+ —> , (17
of phase space variables. This issue will be considered in 2 2
Sec. IIIA. Next we calculate the one-point functig8ec.
[IIB) , and the two-point functiofSec. Il C functions. Fi-
nally (Sec. 1l D), the results will be generalized tepoint
functions by setting the diagram rules for their calculation.

[AB]s(x,x’)=f dqdq’e(”h)(p‘q*p"q')<r— gIAIrHL %>

Similar to the inverse relatio(i4), there are inverse rela-
tions for products of matrix elements. The simplest case is
the inverse relation fof AB]4(x,x")=A(X)B(x’). It is a
product of two inverse formulas like E@l4). The inverse
relations corresponding to E¢L6) and (17) are

A. Wigner representations . .
(rolAlri)(ra|BJrs)

Let (r|A|r') be a matrix element of the observable
where(r| and|r’) are position states in Dirac notation. The

Wigner representatiof29] = dpdp

T[AB]S(x,x’)e—(i/ﬁ)[n(rs—ro)+p’~(rl—rz)]
h

A(x)=j dqe(”h)p'q< r— g|A|r+ g> (13 (18)

:f dp(zjf [AB]C(X1X')e*(i/ﬁ)[p'(r2*r0)+P"(T3*r1)]’
of the operatorA is a function of the phase space variables h
x=(r,p). It is a faithful representation of the quantum op- (19

erator, since all its matrix elements can be reconstructe%here in Eq. (18 x=((rs+ro)/2p) and x'=((r,

from the inverse relation +1,)/2,p'), while in Eq. (19) x=((r,+rg)/2,p), and x’
=((ry+r3)/2p’).
. dp o In understanding the nature of the new Wigner represen-
(rAfr")= f Fef(' P TTOA(X), (14)  tations, it will be instructive to consider examples. As a first
example consider the operators

wherex= ((r’+r)/2,p). Expressed as a function on the clas- A=f (r—ry) and B=f,(r—r,), (20
sical phase space, the Wigner representation is convenient ) ) _ )
for semiclassical expansions. wheref (r) is a Gaussian function of widthr:

The external product of two operatosg B, with matrix . 2
elementsro|A|r,)(r,|B|rs), has more than one Wigner rep- f (r)= —dlzexp{ - 2—] : (22)
resentation. These representations correspond to the various (2mo) a

ways by which pairs of coordinates are used for the Fourier _ _ . .
transforms. One possibility is to pair the coordinates of eacl‘?‘. straightforward calculation of the Wigner representations
one of the operators separately, ig,with r; andr, with  Yi€lds

rs. Obyiously, the result. in thiAs caseAwiII be the pr(?duct of [ABl4(X',X)=f,(r—ro)f (r'—ry) (22)

the Wigner representations @& and B. Denoting this by

[AB]4(x,x"), we have and
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[ABeo(X', ) =h38(r =) (1= ro)f,(r' =)

, (ri=ro)® i
Xfh2p0(PEP )ex;{T+

><(r1—fo)], (23

where the+ and — signs ofp’ correspond td AB]. and
[AB]; respectively[ AB]4(x’,x) is independent of the mo-
menta and large whemn~ry andr’~r;. On the other hand,
[AB]sc(x',x) are exponentially small for all values wfand
x', when |rg-r4|>0. If ro=r; and o|p|¥2?>1, then
[ABIs (X' ) =h"fZ(r—ro)8(r'=r) 8(p=p’).

As a second example consider the case

A=B=[¢)(4|. (24)

Here both observables are equal to the same projection op-

erator. Assuming the wave functiap(r) to be real(as for
the case of time reversal symmetgne immediately sees
that all types of Wigner transforms are precisely the same:

[AA]s (X X)=[AA]4(X"X)=py(X")pg(X), (25
where
(x)=fd etirmpal 3 ) g (26)

is the Wigner function of the stateb(r). p,(x) is a real
function which upon small smearing in phase space yields

positive definite function that can be interpreted a “classi-

cal” density distribution[29].

B. One-point functions

To begin with the calculation of correlation functions, it is

instructive to consider, first, the simplest case of one-poin

functions:
A dx
Ca=(Tr{AIm G‘(e)})=fFA(x)(lm G (). (27

HereA is an observable, and IG& (¢) is the imaginary part
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FIG. 2. The orbit configurations contributing to the average of
the Green functions produéG ,(r1,ro)Gosdr3.r2)).

C. Two-point functions

We turn, now, to the calculation of the two-point function

Cap(0)=(Tr{G" (e+hw)AITHG (€)B}):, (30

where (- - -). denotes the connected part of the correlator
[30]. Within the semiclassical approximation it means that
only the oscillatory parts of the Green functions contribute to
Cag(w). Inserting complete sets of position states one can
write the correlatof30) as

CAB(w)=f drodrqdrodrgA(rg,r{)B(ry,rg)

a X{(Gosdl1,10;€+7w)Goedr3,r2;€)), (31)

where

A(ro,r)=(rolAlry), B(rz,rz)=(ro/Blrz). (32
Next we evaluate the average (B, G,o. For this pur-
bose notice that, to obtain a nonzero contribution, one has to
pair orbits of the two Green function with similar actions.
This condition imposes restrictions as for the possible con-
figuration of the coordinates,rq,r,, andrg. The possibili-

ties (in systems with time reversal symmetpiesre (i) rg

~rg andr,~r,, as illustrated in Fig. @); (ii) ro~r, and
r,~rs, as shown in Fig. @); and (iii ) two possibilities cor-

of the retarded Green function. The second equality in theesponding to the caseg~r, andr,~r3, where the orbits

above formula is obtained by substituting E@4) into the

are deformations of periodic orbits, as can be seen in Figs.

trace, and taking into account that energy averaging acts onl(c) and 2d). These pairing possibilities imply that the two-
on the Green function. This averaging leaves only the Weypoint function is a sum of terms

contribution(1); therefore,

Ca=m((A(X))), (29

Cas(®)=Cag(w)+CRg(w)+Cip%(w), (33

where the superscrip®, b, ¢, andd refer to the contribu-

where double brackets denote the microcanonical averagéns associated with configurations of trajectories as shown

over the energy shell="H(x), i.e.,
dx
<<A(X)>>=fEA(X)ﬁ(E—H(X))- (29)

Notice thatA and {(A(x))) do not have the same dimen-
sions, they differ by dimensions of energy.

in Fig. 2.

We turn to calculate the various terms @fg(w). Con-
sider, first,Cag(w) associated with the configuration of or-
bits shown Fig. £a). We start by substituting the Wigner
representationil8), implied by the pairing of initial and final
points, into Eq.(31). Then we change variables to

r=(l’0+l’3)/2, I"=(r1+r2)/2,



1290 ODED AGAM PRE 61

q=rs—ro, q'=ri—ry, %2 o o
K(X’,X)Zﬁf dqdq’dr, dr/rr’e” (/Mp-atpr-a)

and perform the average over the Green functions. This av-
erage gives precisely the classical propagdidix’,X; ) <G+
0s

q
+5,r'+r] et
[see Eq.(5)]; therefore, drts.r'+rietho

2

XGged 1’41 ,r— g,e+ﬁw
C,iB(w)=J dxdx'[AB](X,x")II(X',X; ®)
27 (= X Gyed r’~|—q—,r+rL;e
=T CaretqraBlooxn). (3 -
0
XGosd Fr.r _%;5)>,

where in the second line we substitute formylkD) for
I1(x',x;w), and integrate ovex’.
The calculation of the contribution, coming from orbits of X=(r,p), andx’=(r’,p"). In obtaining the above integral
the type shown in Fig. ®), follows along the same lines. We also changed variables to
The difference is that now we use the second Wigner repre-
sentation, Eq(19). Changing, again, variables to means and r=(ro+r)/2, 1'=(ry+r3)/2,
differences of the initial coordinates, and using the time re-
versal symmetry of the systenG*(rs,ry)=G=(r,,rs),
yields q=ri—ro, Qq'=rz—rs.

Now we approximate the average of the four Green functions
CE\B(w)=f dxdx'[AB] (X, X")II(X",X; @) by the diagonal approximation. Diagonal sums in this case
can be formed in two ways coming from the two possibilities
2@ (= of pairing the retarded and advanced Green functions. These
:Tfo dte“(([ABlc(x.x(1)))). (39  two possibilities correspond to the orbits configurations illus-
trated in Figs. &) and 2d). The two contributions are iden-
tical due to the time reversal symmetry of our system. As in
The computation of the last two contributions, associatedhe calculation of the classical propagator, we expand the
with the orbits of Figs. &) and 2d), requires an additional actions to linear order arourrd r’, ande, and integrate over
step. This step comes in order to impose the condition thad, q’, r, , andr’, . The result is
the two orbits are deformations of the same periodic orbit. It
is achieved by requiring that the orbit frorg to r, passes
near {,+r3)/2, and similarly the orbit from; to r, passes K(x',x)=8m2h%rr’ > |A,[2|A, |2 ettt
in the vicinity of (ro+r;)/2. To implement this condition it mv
will be convenient to introduce a local coordinate system
=(,r,), wherer is the time along the trajectory while the
coordinater | is perpendicular to it. Then the oscillatory part
of the Green function satisfies the semiclassical product re-
lation )

_pﬂ P,

o\ p

) 5(p,uj_ - pVJ_)

!

PP, ,

Ggsc(rl,ro;e)zﬁf r er_G;):sc(rlvr;E)Goisc(r'ro;e)' wheret , andt, are the periods of the orbits going franto

(36) r’ and fromr’ tor, respectivelyp, andp, denote the mo-

menta of the orbits at, and similarlyp;, and p, are the
momenta at’. We denote by subscript the perpendicular
This relation can be proved by calculating the integral in thecomponents of momenta that are conjugate to Finally,
stationary phase approximation; see Appendix C. we replace the sum over orbits by an integral using the sum
Substituting Eq(36) in Eg. (31) and representing the ma- rule (9), and obtain

trix elements of the operatord and B in terms of their
inverse Wigner transformEq. (14)], we obtain

dtdt’
Hd( )= Zf Py gloltrt )<<[AB]d(X XMW -
cetd w)—f dxdx [AB]4(x,x)K(X',x),  (37) (38)

The averagd(- - -))  of a general functioy(x,x’) is de-
where fined as
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I _(X,x ;)
(<9(X1X/)>>t,t':j dxdx’'g(x,x") 6(e—H(x)) (e @ L6X

N X
—H(X"))8(x| —x(1)) dlx—x{ (t")), S
(39) [AB] (X,X)
wherex denote a coordinate on the energy skeHH(x). b
The two § functions in the above integral imply that the ©® (5, X;0)
average is over periodic orbits on the energy shell with pe- E
riod t+t’. The factor of 2 in Eq.(38) is due to the time  x{ """
reversal symmetry.
The final result for the two-point functiol§ ,g(w), is the Tael .- N
sum[Eq. (33)] of Egs. (34), (35), and (38). It expresses a AB] (X,X)

guantum mechanical quantity, in terms of classical correla-

tion functions associated with the Wigner representations of | 'C: 3- The diagrams of the two-point functi@g(«). Wiggly
lines represent the classical propagator on the energy Ebell

the operatorsA and B. There are two sources of contribu- (40)], and the dashed line correspond to the verticies given by the
tions toCg(w): open trajectories, and periodic orbits. The appropriate Wigner representation of the observablesdB.
magnitude of the corresponding terms depends on properties
of the various Wigner representationfAB]y(x,x'), (v) In the case where two classical propagators join at the
[AB]s(x,x"), and[AB]c(x,x"). WhenA(x) andB(x') are  same phase space point, then such a point is accompanied by
very smooth functions, the main contribution comes from¢actor of 1/2r [this factor emerges from expansions like Eq.
periodic orbits. If, on the other hand andB equal to the (36)].
same projector, the main contribution comes from open or- (vi) Integrate over all phase space coordinates with the
bits. weight [dx&(e—H(x))(---)/h%. This integration is the
same as microcanonical averagif2®).
D. Diagrams rules for n-point functions in systems The diagrams _Of t.he two-point .Corr.elation function
with time reversal symmetry Cag(w) are shown in Fig. 3. The contributio®} 5(») and

ch ted by Fi d 3b tively.
The results for the two-point function can be generalizedTAB(w) are represented by Figsiaand 3b), respectively

. . . o hese terms came from orbits configurations shown in Figs.
to n-point functions in systems with time reversal symmetry.z(a) and Zb). The two other contributionEFigs. 2c) and
It is instructive to formulate this generalization in terms of a

c+d ; ;
set of rules for a diagrammatic calculation. Only the con-z(d)]’ Cag (), are represented by the diagram of Fig)3

nected part of the correlation functions will be considered In Fig. 4 we show e_xamples_of diagrams contributing to
LA .~ ~.the three-point correlation function,

here. It implies that the relevant part of the Green function is

the oscillatory contributior2).

We define the dimensionless propagator on the energy
surface as XTHG (e+%w,)BITHG (€)Cl)..
(41)

Casc(@1,0,) =(TH{G" (e+fw;)A}

’ . 2m (= i wtpd ’
I (x ,x”,w)=7J0 dt €“'h%s(x; —x (1)), (40

L, x;0)  TT(xX; 0-02)

rop +  &rhoy X ONANAANANANANAAND
where bothx; and x| lie on the energy shele=H(x). In X C X 10X
order to shorten our notations, from now on, we omit the € X &+hw, N
subscript||. The rules for calculating the average of an R [ABC]al(X,X‘,X‘\)"

n-point functions are the following.

(i) Write the correlation function as a space integral in-
volving the matrix elements of the operators and the Green
functions.

(i) Find all possible pairs of initial and final points con-
nected by Green functions, and construct the orbits configu-
rations as in Fig. 2. To each coordinate pair assign a phasi
space point.

(iii) Express the matrix elements of the operators as ar
inverse transform of the Wigner representation implied by
the pairing configuration of the initial and final points. These
Wigner representation are functions of the phases space
points assigned in stefii). FIG. 4. Examples of diagrams contributing to the three-point

(iv) Phase space points connected by retarded and alnction (41). The orbits configuration corresponding to a diagram
vanced Green functions are associated with the classicéd drawn on its left side.,ABC], 4(x,x’,x") denote various Wigner
propagator(40) connecting the two points. representations of the external product of observailes3 C.

TI(X,X; - ©2)

HS(X\7 X; (01) HE(X 5X\\;('01)

X
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@ ®) .
I (x}x;0)
X{ X\
€ + * /,’
X X
€ - d(xery) d(ikr)
(c) @ (X, X ;-0)
_ g+hw
FIG. 5. An illustration of the classic-disk scattering system. X<\N\/\N\/\/>X\
In the experimental realization of the quantum analogue of this + & S s
system, using microwave cavities, a transmiter locateq akcites o e
5(ryr°) a(rirl) d(1zr,) 8 (1)

X x
a microwave field which is probed af. y v ¥ ,
€ -
For instance, the top diagram of this figure is equal to v YWY\
+

((HE(X”vxriwl_wZ)HE(X’1X!wl)[ABC]a(X1X’1X”)>>/2ﬂ-1 8+h(l) N
where the microcanonical average is with respect to all the e(y,y; ©)
pm‘?e space coordinates. . FIG. 6. The diagrams of the correlation functiifw). (a) The
Finally, we remark that the procedure outlined ab9ve 9€Norbit configuration, and(b) the corresponding diagram for
erates a large n_umber of diagrams. However, knowing SOMBG*(r,,ro:€)|?) . () The orbit configuration, anet) the diagram
general properties of the observables, such as symmetrigsy the connected part dG* (ry,ro;€)|2G" (r1,ro; e+%w)|?).

and the smoothness of their Wigner representations, can help

in reducing the number of diagrams considerably. contribution associated with the oscillatory parts of the
Green functions. The diagram representing this contribution
IV. APPLICATIONS is shown in Fig. &). A straightforward calculation of this

The purpose of this section is to present applications Ofilagram yields

the formalism developed above. In the first example we con- "
sider theN-disk scattering systei81,32. In the second ap- <|G+(f1,fo;6)|2>=f dtf(ry,roit), (44)
plication we study the indirect photodissociation process of 0
complex moleculegl]. Special attention will be given to
understand the manifestations of the individual imprints ofwhere
the systems.
. . f(ry,ro;t)= f i
A. N-disk scattering system 1,70 hd—172

S(e—H(X0))d(ry—r(Xg,t))

Consider a quantum particle moving in a two-dimensional (45
plain, and scattered frold disks located, say, randomly near
the origin; see Fig. 5. Resonances in this system can be pi¢S Proportional to the classical probability of finding particle
tured as situations where the particle is trapped for a longtr1, starting fromr in all possible directions, and evolving
time in the vicinity of the disks. A natural quantity charac- according to the classical equations of motion. Hepe,t)
terizing the system is the probability of finding it in a final denotes the trajectory of the particle, as function of time
state| ;) when prepared in an initial statg;). In the ex-  starting from the initial phase space poigt=(rq,po).
perimental realization of this systef@3], using microwave The correlatoK () is proportional to the diagram shown
cavities, a transmitor prepares the particle in a localizedn Fig. 6(d), where again we assume the distance betwgen
wave packet at,, and a detector collects the particlerat ~ andro to be much longer than the particle wavelength. A
The signal is proportional t§G*(r;,ry;€)|?, and its sim-  straightforward calculation of this diagram leads to
plest statistical characteristics is the correlation function:

F(ry,roso)|?
(IGT(r1,r0;€)|?G (rq,ro;e+hw)|?) K(w)z‘m : (46)
e 16" (o roie ) o
(420  where
To implement the diagrammatic approach, we start by o _
writing |G*(ry,rq;€)|? as a trace: F(fl,ro;w)ZIO dt €“'f(ry,ro;t) (47)

G (r1,ro;€)?=TrH{G  (€)8(r—rg)G (€)8(r—ry)}.
IG7(r.roie) (G )G () 1)}(43) is the Fourier transform of(r,rq;t) for timet>0.

In understanding the typical behavior I§{ w), it is nec-
The orbit configuration representing the above formula isessary to characterize the functid(r,,ry;t). The spectral
shown in Fig. 6a). Assuming the distancir;—r,| to be  decomposition of the classical propagdtig. (12)] implies
larger than the particle wavelength, there will be only onethat[33]



PRE 61 DIAGRAMMATIC APPROACH FOR OPEN CHAOTIC SYSTEMS 1293

1.0

0.8 [

energy

0.2

X

®

FIG. 8. An illustration for the electronic energy surfaces of me-
thyl nitrite, CH;ONO, as an example for a complex molecule which
undergoes an indirect photodissociation proc8sandS,; are con-
tour plots of the electronic surface potential associated with the
ground and the excited electronic states. They are plotted as func-
tions of the distances between the nitrogen and the oxygen atoms,
keeping all other degrees of freedom fixed at their equilibrium val-
f(rl,ro;t)zz b,e 7, (48) ues. The irregular shape &, leads to chaotic dynamics of the

@ excited molecule.

FIG. 7. The correlation functioik(w). The solid line corre-
spond to the universal limit whee,=0 for all «>0. The dotted
line includes nonuniversal imprints of the system, with=1.5,
v1=2,andy;=4.

B. Statistics of photodi iati t
wherevy, are the Ruelle resonances of the system,landre alistics of photodissociation spectra

coefficients associated with the eigenfunctions of the classi- As a second application of the semiclassical diagrammatic
cal propagator)(la(x) and x'(x), as well as the precise po- approach, we study the statistics of photodissociation spectra
sitions of the transmitor and the detector. The first eigenof complex molecules, such as the radicals Hdd NG.
value y, is the escape rate of the system. This eigenvalesmtegratlon of such molecules is a two-step process. In the
dominates the behavior of the system at long times, i.e. smafirst step, a photon excites the molecule to an energy above
. Taking only its contribution, the correlation function re- the dissociation threshold. Then fragmentation proceeds by
duces to a Lorentziark ()~ y2/(y2+ »?). This result has redistribution of energy in the vibrational degrees of free-
been known long ago in nuclear physi&. It was repro- dom, or tunneling from binding to unbinding energy surfaces

measured experimentally in a microwave cavifigg]. separates quasistable states from continuum modes, hinders

We turn to a consideration of the nonuniversal imprints ofthe immediate dissociation of the excited moIecuIe._The
the system orK(w). For this purpose we shall take into large numbe_r of degrees of freedom a_nd the complexity of
account contributions of higher Ruelle resonances in Eqthe system imply that, on these long lived resonances, the
(48). It will be convenient to rescale all frequencies wig, dynamlqs of the sy;tem is chaotic. An illustration of such a
and seth,=1 (without loss of generality Then, adding the SYStém is depicted in Fig. 8. _
next term of eq(48), F(w) takes the form Consider a molecule, in the ground stfdg, excited by a

light pulse to an energy above the dissociation threshold, and
let 7 denote the Hamiltonian of the system on the excited
b, electronic surface$, in the illustration of Fig. 8. It will be
' (49 assumed thak{ represents an open system with several open
channels. The photodissociation cross section of the mol-
ecule, in the dipole approximation, is given by

t2

yiti(oxy))

wherey; and y; denote the real and the imaginary parts of
v, respectively, and we assurbeg to be real. In Fig. 7 we
plot the correlation functiork (w) calculated from Eq(46) o )
using Eq.(49). The solid line is the Lorentzian obtained WhereG- (e) is the retarded Green function of the molecule,
whenb,=0 for a>0. The dashed line is a representativeandA is a projection operator given by
example of the nonuniversal behavior of the systewth
b,=1.5, y;=2, y|=4, andb,=0 for a>1). A_ _

A behavior very similar to that shown in Fig. 7 was re- A=[#)(g] where[$)=Dlg). ®)
cently observed in a microwave experiment on the four-disk .
system[23]. Our results explain the additional peak in the Here D=d-e is the projection of the electronic dipole mo-
measured correlation functiof(w), as an imprint of the ment operator of the molecutg on the polarizatior, of the
complex Ruelle resonances of the sysf&8]. absorbed light, andy= e/cheq, ¢ being the speed of light,

o(e)=nImTrH{AG (e)}, (50)
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and g, the electric permitivity. The energy is measured
from the ground state of the molecule.
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sponds to the mean spacing between resonances. Substituting
the above approximations of the classical correlation func-

A natural statistical characteristic of the photodissociatiortions into Egs.(55) and (56), and rescaling the energies as
process is the dimensionless two-point correlation function:zw=QA and7 y,=1"A, one obtains

_ (o(e)a(e+hw)),
(a(€))? '

It will be assumed that the excitation energy, is suffi-

Z(w) (52

oo 26 T 1 I?-02
A== 12 07 " om (1o 022
(59

ciently high such that the mean spacing between the vibrayhere¢=(a/((p,)))?/b is a dimensionless constant of order
tional modes of the molecule is smaller than the energy,nity. The first term in the brackets comes frd@y(o), i.e.,
excited states. This is the regime of overlapping resonancesp). This term constitutes the leading contributionZtw)

From Egs.(50), (27), and(30) it follows that the correla-
tion function(52) is equal to

Can(w)
c:

Z(w)= %Re (53

whereA is the projection operatdiEq. (51)], while C, and

whenI'>1. In the limitI’<<1, the second term in the brack-
ets becomes dominant. This term, associated Witfw),
comes from the periodic orbits of the system. Notice, how-
ever, that the regimé& <1, corresponding to less than one
open channel, is beyond our semiclassical approximation.
Equation (59) represents the universal limit of the cor-
relatorZ(Q). It was first derived by Fyodorov and Alhassid

Caa(w) are the corresponding one- and two-point functions[21] using the nonlineas model[39]. Our derivation con-

The special feature of the operatdr@A is that all its
Wigner representations are identical; see &%). This im-
plies that Eq.(53) has the form

Z(w)=Z1(w)+Zy(w), (54)
where Z;(w) is the contribution of open orbitgFigs. 2a)
and 2b)],

por 2 ReJx graer Cpa@IPN

wh 0 {py(x)))?
while Z,(w) is the contribution of periodic orbifd=igs. 2c)
and 2d)]:
1

(et Pa(¥)p (X))
’7T2ﬁ2 .

Zo(w)=
2e) Ups(X)))?

Ref dtdt’' e
0

firms their conjecture that, in the limit of overlapping reso-
nances [[>1), Z(w) can be derived by semiclassical meth-
ods. An alternative derivation of Ed59), using random
matrix theory, is presented in Appendix D.

The range of validity of formulags4)—(56) goes far be-
yond the universal regime. They also account for system
specific contributions which contain valuable information
about the nature of the system. These individual imprints
come from the higher eigenvalues and eigenvectors of the
classical propagatdieqg. (12)].

For example, the leading nonuniversal contribution com-
ing from Z,(w) is given by

I'y

2fa,
zM(Q)= :
() 2 I24(Q*0,)2

m +

HereT',=7%vy;/A andQ,=7%y]/A, wherey; andy] are the
real and imaginary parts of the second Ruelle resonance. The
constanta; comes from an integral similar to E¢G7) but

p4(X) in the above formulas is the Wigner function of the with the eigenfuncti0n$('1'r(x).

initial stateD|g).
Consider the limit of small. This limit reflects the long
time behavior of the correlation functioé&o ,(X(t)) p4(x)))

and {(p4(X)p (X)) - The leading contribution, in this
case, comes from the smallest eigenvalue in the spectral de-
composition(12), i.e. y,. Taking into account only this ei-

genvalue, we obtain
{pp(X(1))pg(x)))=ae 7,

<<P¢(X)p¢(x’)>)t‘t,:bef 70(’[+’[’),

where
(57)

(58)

a=h%(p4(X) X)) P s(X) x6(X))),

b=h2%({p 4(X) xo(X) X5(X)))%.

Similarly, the leading nonuniversal contribution 8§())
is

I'ri—QQ=0Q,)
2+ 0%+ (Q+09)?)’

2éb
Z(0)~ izmz(

whereby, is a constant depending gn,(x) and the eigen-
functions ' (x) and x;"(x).
The two-point functionZ(€2), in the approximation
2(0)=29(Q)+z{D(Q) +Z§V(), (60)
is plotted in Fig. 9. The solid line represents the universal
form Z(9(Q) given by Eq.(59). The dotted line shows the
typical behavior of systems where decay of correlations is of

diffusive nature. It appears when the subleading Ruelle reso-
nances are purely real);=0). In this case the deviation

The ratiob/a=A has an energy dimension. In the semiclas-from Z(®)(Q) appears mainly as an increase of correlations

sical limit #—0, it approaches zero d"; thus it corre-

near )=0. The dashed line corresponds to the case of a
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is more complicated. The reason for this is that, usually in
ballistic systems, there is no separation between the time
scales on which nonuniversal features appear, and that where
time reversal symmetry is broken. Further development of
this diagrammatic approach should include a prescription for
calculating weak localization corrections, generalization to
systems without time reversal symmetry, and generalization
to systems with other discrete symmetries, such as reflection
or inversion.
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FIG. 9. The two-point functiorZ({)) of the photodissociation
cross section for systems with time reversal symmetry. The solid APPENDIX A: LOCAL TERM II,,.(X',X; ®).
line is the universal resuftEq. (59)] for the caseé=T"=1. The
dashed and dotted lines show the two-point function which includes In this appendix we calculate the Weyl contribution to the
system specific contributions in the approximation of E&f). In  classical propagatof](x’,x; ). Substituting Eq(1) in Eq.
both cased’=1, I';=3, anda,; =bgy;=1, but the dashed line cor- (5), and integrating oveq andq’, we obtain
responds td);=6, and the dotted line t6;=0.

i , .+ [ dpodpy PotP1 ,
complex Ruelle resonancé)( #0). It characterizes the be-  Hioc(X',X; @)= h2d o p———5—|p=p")
havior of ballistic systems. Here the nonuniversal contribu-
tion is located in the tail oZ({}), nearQ)=(,, where the eli/f)(po=py)-(r' =)
universal term(59) is already negligible. These plots demon- X —— — ,
strate the significance of the individual imprints of the sys- [e+ho+i0=H(xo)][e=10=H(x))]

tem onZ(Q). wherexo=((r+r")/2,po), andx;=((r+r")/2,p;). Next we
change variables tk’=(py+p1)/2 andk=py—p;, and in-
V. SUMMARY tegrate ovek’. The above integral then reduces to

The main result of this paper is the construction of a dia- A
\ , . . dk s(p—p')e

grammatic approach for calculating thepoint functions of — . . ,
open chaotic systems with time reversal symmetry. In es- h*! [e+hao+i0—H(X")][e=i0—H(X )]
sence, this approach is simply an economic way for evaluat- . , ) ) L
ing the “diagonal approximation” for the-point functions. Wherex™=((r+r’)/2,p+k/2). In the sgml.classwal limit;
The result is expressed in terms of classical correlation func=0. the integral ovek yields aé function; thus
tions associated with the observables. These correlation

(i1R)k-(r'=r)

’r_ d
functions reflect properties of the Perron-Frobenius spectral 11 (x’ x;w)= : S =x)/h i ]
decomposition of the system, i.e., features of the irreversible (e+hw+i0—H(x))(e—i0—"H(X))
dynamics of probability densities on the energy shell. An (A1)

important ingredient of this formalism is the generalization
of Wigner transforms for external products of operators.
The strength of this formalism is in its capability of treat-

To extract the leading order semiclassical approximation of
this expression, we manipulate the denominator as

ing particular systems rather than an ensemble of them. Nev- 1 1 1
ertheless, in the appropriate limit, our results reduce to those D= — | - ——

of random matrix theory. This was demonstrated by consid- ho+i0[e=10-H(x) etho+Ti0=H(x)
ering two examples: th&l-disk scattering system, and the 1 1 1

process of indirect photodissociation in complex molecules.
The weakness of this diagrammatic approach is the lack of a
clear systematic procedure for calculating quantum correc- _
tions such as weak localization correction. This limits our = 7ariol™ d(e—H(x)).
treatment to systems with an escape rate sufficiently large so
that the system disintegrate before weak localization effectgupstituting these results in E¢A1), we obtain Eq(6).
set in.

The focus of this paper was on system; with t.im_e reversgl APPENDIX B: THE CLASSICAL SUM RULE (9)
symmetry, and no other discrete symmetries. Within the uni-
versal limit, a generalization of our results to a system with- In this appendix we derive the sum rul@. The deriva-
out time reversal symmetry is straightforward. However,tion will be performed by calculating the right hand side
when considering nonuniversal manifestations, the situatiofrhs) of the equation and showing it equals to the left hand

T hw+i0|e—i0—H(x) e+i0—H(xX)
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side. It is convenient to introduce a local coordinate system
with time coordinates, along the trajectory, and_ perpen-
dicular to the trajectory. The corresponding conjugate mo-
menta are the Hamiltonian functid#, andp, . In these co-
ordinates the rhs of formulé®) takes the form

» dHdH’
[rhs of Eq.(9)]:J dtj ——dp, dp; g(x,x’,t) P
0 rr’ 1
X 8(e—H")S(H— Ht')5(7_ Tt,) FIG. 10. Classical paths joining, ry andrc+r, .
X8(r —r' )8(p.—ply- APPENDIX C: PRODUCT FORMULA EQ. (36)

In this appendix we prove the semiclassical form(#6)
relating a Green function to the product of two Green func-
tions. We consider the case Gf,.. The generalization for
Egsc is straightforward. We start by evaluating the integral
on the right hand side of Eq36) using stationary phase
approximation. Substituting E2) into Eq. (36) yields

wherer’ andr are the absolute values of the velocity at the
initial and final points, respectively, while the subscript
denotes the value of the corresponding coordinate after tim
t. Thus, in particulart’, ; andp’, ; are functions of the initial
phase space point =(r',p’) and the timd. Since energy is

conserved, one had;=H’. The factor 1fr’ in the above
integral comes from the Jacobian of the transformation of [rhs of Eq.(36)]
variables. An integration oved, H', andp, gives

- fdu FALA, /DS9S, (10 9)],
o

% dp;
[rhs of Eq.(9)]=fO dtf ﬁﬁ(r— T )O(r —riy) (C1)

XQ(X,X',U|H=H'=€, P =p| whereu denotes the orbits from, to r, while u” the orbits
from r to ry. The amplitudesA, and A, satisfy relation
Since the initial and final points of the particle as well as its(B1). The stationary phase condition of the above integral is
energy are fixed, there is only a discrete set of trajectories
which contribute to the above integral. These are the trajec-
tories for whichp| takes a value such that =r|,. We
denote these trajectories by a subsc,dptl’huspi# andp, , . . _
are the initial and final momenta of theth trajectory, and,, ~ With the classical relationsdS,(r,rq;€)/or=p, and

J
E[Sﬂl(rl,r;e)+SM(r,ro;e)]=0.

is the corresponding period. Then S;L(rl,r;e)/&r= —p/’b, this implies that the momenta of the
uth and u'th trajectories at are equalp,=p, . Thusr
o dp! lies on a classical trajectory which goes framto r;. We
[ths of Eq.(9)]=2, f dt 5(t—tM)f — denote this trajectory by; see Fig. 10. Notice that the sta-
w J0 Lty tionary phase condition applies only for the perpendicular

components of the momenta. However, since the energy is
fixed and equal for both trajectories, the longitudinal compo-
nents of the momenta of both trajectories have to be equal as
well.

Denoting byr. a stationary value of, we see that the
stationary phase is the action of theh orbit fromrg to ry:

X 5(rL_ rit)g(xlu IX;L 1t)1

wherel’ , is an infinitesimal region surrounding , in the
momentum spacex, =(r,p,), andx, =(r’',p,). The inte-
gral is straightforward, and the result is

1 or
fDefl —L
rr’ ap|

where all quantities in the square brackets are calculated for

the uth orbit. [rhs of Eq.(36)]=2, 1,el/MSiruroie),
To see that this result is equal to the left hand side of Eq. v

(9), we notice that the expression in the square brackets is o

related to the amplitudd,, of the semiclassical Green func- where the pre-exponent factby is given by

tion [Eq. (2)] according tg25]

Su(ri,rc;€)+S,(re,ro;€)=S,(r1,ro;€).

s Thus integral(C1) takes the form

[rhs of Eq.(9)]=>, 9(X,, X, )
N

: T T
|V=hrA#AM,h(d1>’2(Det(m+f“‘)) . (©2

|Aul?

(%)

— (B1)

rre’ 'Ll This was calculated by expanding the sum of actions,
S,/(ry,r;€)+S,(r,rq;€) to second order im, aroundre,

Combining the last two equations yields the sum r@e and calculating the resulting Gaussian inted@l).

:hd_lﬁz
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To see the equivalence between this result and the lefuhere 1A=(X,56,,(e—¢€,)) is the average density of

hand side of Eq(36), it remains to show thdt,=A,, where
A, is the amplitude corresponding to théh orbit fromrg to
r,. It is sufficient to analyze the magnitudeslgfandA,,,
since the Maslov phases are additive. Substituting(Bdy),
for A, andA,,,, in Eq.(C2) we obtain

u'
IPL ap, o\ ) M
De De
1 ar ar

Vha=Th2r o4 Det( 3(pm—pw))

Thus|,=A, if the term in the curly brackets is equal to

Det(dp, 1/dr o). Following Berry and Moun{24], we first

states, and ¢,(j) ¢.(K))= &k /N. Working in units where
7{p|$)=N, we obtain(c)=1/A.

Consider now the connected part of the correlation func-
tion (o(€)o(e+ w)). Its calculation requires the average of a
product of two expressions like E¢D2). Here we use the
RMT relation

N2 o(1) @a(K) (1) @g(1)) = 8apl 8ji S+ 81 kil + Sk Sy -

The three terms on the right hand side of the above equation
correspond to the various paring possibilities of orbits as
shown in Fig. 2. In particular, the first and second terms
correspond to Figs.(3) and Zb), while the third term cor-
responds to Figs.(2) and Zd). Performing the sum overj,

write this term as a determinant of the product of the threek, and|, the contribution of the first two terms is,,(w)

matrices:

&pL,u,’XapLO
ar 4 or, |

apip,_ pip,’ -
ar,

{}= Det{ (C3)

Now we use the stationary phase conditpn,—p, ,»=0,

which applies ar=r., and differentiate it with respect to

r. 1, keepingr o fixed. Then

arq

&pL,u’ _ a(pip,_ pip,’)

Substituting this result into EC3) and using the chain rule

of derivatives, we obtaif) } =Det(dp, ¢/dr, ;) which proves
Eq. (36).

APPENDIX D: AN ALTERNATIVE DERIVATION
OF EQ. (59)

In this appendix we derive formuléb9) using random
matrix theory[20] (RMT). Our starting point is the Hamil-
tonian of the formHy+iy/2, whereH, is anN XN random
matrix of the Gaussian orthegon@OE) ensemble, ang is

a constant which equals to the typical width of the reso

nances. With these definitions;(€)=(¢|5,,,(e—Ho)| ),
where

1
5,(0="——~

—_— D1
el (DY)

and |¢)="D|g) [see Eq.(51)]. Denoting by¢,(j) the jth
component of the eigenfunction numherof H,, we have

o(e>=n§ % 8,0 €= €2) 0ol @u(K) B(j) p(K).
(D2)

To perform the ensemble averaging we use the property

RMT that eigenenergies, and the wave functiong,(j) are
statistically independent. Thus

(o) =yz 2 D03y

=2(Z,0,(e—€,) 0, (e+w—€,)), while the contribution
of the third term is given by the -correlatol y(w)
=(2 30, 2( €~ €,) Oy €+ w—€p)) — LAZ. Thus

2 2 y
lap(@)= Kj ded,n(€) o p(et+ w)= A m

and

leq(w)= j dede’ 5,5(€) 5,(€' —w)R(e—€'),

whereR(e—€') is the two-point function for the density of
states of the GOE ensemble. Substituting the approximation
R(e—€e')=Refdtte€ <)Y/ 72 and performing the inte-
grals overe ande’, we immediately obtain

o 2_ 2
dttef'ytﬂwt:i Y w

1
log(w)=—Re _
col @) i 0 2 (72+w2)2

Collecting these results we arrive at

ZO(w)=A%(I (@) + I e @)
_2A A% y2—w?

T w2492 72 (Y2t w?)?

Formula(59), apart from the prefacta#, is obtained by res-
caling the variables in the above equationlas y/A and
Q=wl/A.

We show, now, that in systems with a separation of time
scalesy; > vy,, the constan€ in Eq. (59) is approximately
unity. The separation of time scales implies that for times
shorter than 1/, the dynamics of the system may be ap-

roximated by that of a close chaotic system whose Hamil-
nian will be denoted byy(x). In this case the first eigen-
functions of the classical propagator are constant functions
corresponding to the ergodic distribution on the energy shell,
namely, x'(x)= x"(X) =[S dx&(e—Ho(x)]~ Y2 Substituting
these eigenfunctions into expressi@h3) and(58) for a and
b, and evaluating:=a®/({p,))*/b, one obtains=1.
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